Results 1  10
of
95
The price of stability for network design with fair cost allocation
 In Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS
, 2004
"... Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite differ ..."
Abstract

Cited by 208 (28 self)
 Add to MetaCart
Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite different from the centrally enforced optimum. We study the quality of the best Nash equilibrium, and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash equilibrium solution has a natural meaning of stability in this context — it is the optimal solution that can be proposed from which no user will defect. We consider the price of stability for network design with respect to one of the most widelystudied protocols for network cost allocation, in which the cost of each edge is divided equally between users whose connections make use of it; this fairdivision scheme can be derived from the Shapley value, and has a number of basic economic motivations. We show that the price of stability for network design with respect to this fair cost allocation is O(log k), where k is the number of users, and that a good Nash equilibrium can be achieved via bestresponse dynamics in which users iteratively defect from a starting solution. This establishes that the fair cost allocation protocol is in fact a useful mechanism for inducing strategic behavior to form nearoptimal equilibria. We discuss connections to the class of potential games defined by Monderer and Shapley, and extend our results to cases in which users are seeking to balance network design costs with latencies in the constructed network, with stronger results when the network has only delays and no construction costs. We also present bounds on the convergence time of bestresponse dynamics, and discuss extensions to a weighted game.
Selfish Routing and the Price of Anarchy
, 2005
"... Abstract Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure o ..."
Abstract

Cited by 175 (12 self)
 Add to MetaCart
Abstract Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price of anarchy of selfish routing. We also describe related results on bounding the worstpossible severity of a phenomenon called Braess's Paradox, and on three techniques for reducing the price of anarchy of selfish routing. This survey concentrates on the contributions of the author's PhD thesis, but also discusses several more recent results in the area.
Tsitsiklis. Efficiency loss in a network resource allocation game
 Mathematics of Operations Research
"... We consider a resource allocation problem where individual users wish to send data across a network to maximize their utility, and a cost is incurred at each link that depends on the total rate sent through the link. It is known that as long as users do not anticipate the effect of their actions on ..."
Abstract

Cited by 144 (10 self)
 Add to MetaCart
We consider a resource allocation problem where individual users wish to send data across a network to maximize their utility, and a cost is incurred at each link that depends on the total rate sent through the link. It is known that as long as users do not anticipate the effect of their actions on prices, a simple proportional pricing mechanism can maximize the sum of users’ utilities minus the cost (called aggregate surplus). Continuing previous efforts to quantify the effects of selfish behavior in network pricing mechanisms, we consider the possibility that users anticipate the effect of their actions on link prices. Under the assumption that the links’ marginal cost functions are convex, we establish existence of a Nash equilibrium. We show that the aggregate surplus at a Nash equilibrium is no worse than a factor of 4 √ 2 − 5 times the optimal aggregate surplus; thus, the efficiency loss when users are selfish is no more than approximately 34%. The current Internet is used by a widely heterogeneous population of users; not only are different types of traffic sharing the same network, but different end users place different values on their perceived network performance. This has led to a surge of interest in congestion pricing, where
On Nash equilibria for a network creation game
 In Proc. of SODA
, 2006
"... We study a network creation game recently proposed by Fabrikant, Luthra, Maneva, Papadimitriou and Shenker. In this game, each player (vertex) can create links (edges) to other players at a cost of α per edge. The goal of every player is to minimize the sum consisting of (a) the cost of the links he ..."
Abstract

Cited by 67 (7 self)
 Add to MetaCart
We study a network creation game recently proposed by Fabrikant, Luthra, Maneva, Papadimitriou and Shenker. In this game, each player (vertex) can create links (edges) to other players at a cost of α per edge. The goal of every player is to minimize the sum consisting of (a) the cost of the links he has created and (b) the sum of the distances to all other players. Fabrikant et al. conjectured that there exists a constant A such that, for any α> A, all nontransient Nash equilibria graphs are trees. They showed that if a Nash equilibrium is a tree, the price of anarchy is constant. In this paper we disprove the tree conjecture. More precisely, we show that for any positive integer n0, there exists a graph built by n ≥ n0 players which contains cycles and forms a nontransient
Selfish Caching in Distributed Systems: A GameTheoretic Analysis
 in Proc. ACM Symposium on Principles of Distributed Computing (ACM PODC
, 2004
"... We analyze replication of resources by server nodes that act selfishly, using a gametheoretic approach. We refer to this as the selfish caching problem. In our model, nodes incur either cost for replicating resources or cost for access to a remote replica. We show the existence of pure strategy Nas ..."
Abstract

Cited by 47 (2 self)
 Add to MetaCart
We analyze replication of resources by server nodes that act selfishly, using a gametheoretic approach. We refer to this as the selfish caching problem. In our model, nodes incur either cost for replicating resources or cost for access to a remote replica. We show the existence of pure strategy Nash equilibria and investigate the price of anarchy, which is the relative cost of the lack of coordination. The price of anarchy can be high due to undersupply problems, but with certain network topologies it has better bounds. With a payment scheme the game can always implement the social optimum in the best case by giving servers incentive to replicate.
Network Design with Weighted Players
 In Proceedings of the 18th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA
, 2006
"... We consider a model of gametheoretic network design initially studied by Anshelevich et al. [2], where selfish players select paths in a network to minimize their cost, which is prescribed by Shapley cost shares. If all players are identical, the cost share incurred by a player for an edge in its p ..."
Abstract

Cited by 44 (6 self)
 Add to MetaCart
We consider a model of gametheoretic network design initially studied by Anshelevich et al. [2], where selfish players select paths in a network to minimize their cost, which is prescribed by Shapley cost shares. If all players are identical, the cost share incurred by a player for an edge in its path is the fixed cost of the edge divided by the number of players using it. In this special case, Anshelevich et al. [2] proved that purestrategy Nash equilibria always exist and that the price of stability—the ratio in costs of a minimumcost Nash equilibrium and an optimal solution—is Θ(log k), where k is the number of players. Little was known about the existence of equilibria or the price of stability in the general weighted version of the game. Here, each player i has aweightwi≥1, and its cost share of an edge in its path
A network pricing game for selfish traffic
 in Proc. of SIGACTSIGOPS Symposium on Principles of Distributed Computing (PODC
, 2005
"... The success of the Internet is remarkable in light of the decentralized manner in which it is designed and operated. Unlike small scale networks, the Internet is built and controlled by a large number of disperate service providers who are not interested in any global optimization. Instead, provider ..."
Abstract

Cited by 33 (1 self)
 Add to MetaCart
The success of the Internet is remarkable in light of the decentralized manner in which it is designed and operated. Unlike small scale networks, the Internet is built and controlled by a large number of disperate service providers who are not interested in any global optimization. Instead, providers simply seek to maximize their own profit by charging users for access to their service. Users themselves also behave selfishly, optimizing over price and quality of service. Game theory provides a natural framework for the study of such a situation. However, recent work in this area tends to focus on either the service providers or the network users, but not both. This paper introduces a new model for exploring the interaction of these two elements, in which network managers compete for users via prices and the quality of service provided. We study the extent to which competition between service providers hurts the overall social utility of the system.
Strong equilibrium in cost sharing connection games
 Proc. 8th ACM Conference on Electronic Commerce, 84–92
, 2007
"... In this work we study cost sharing connection games, where each player has a source and sink he would like to connect, and the cost of the edges is either shared equally (fair connection games) or in an arbitrary way (general connection games). We study the graph topologies that guarantee the existe ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
In this work we study cost sharing connection games, where each player has a source and sink he would like to connect, and the cost of the edges is either shared equally (fair connection games) or in an arbitrary way (general connection games). We study the graph topologies that guarantee the existence of a strong equilibrium (where no coalition can improve the cost of each of its members) regardless of the specific costs on the edges. Our main existence results are the following: (1) For a single source and sink we show that there is always a strong equilibrium (both for fair and general connection games). (2) For a single source multiple sinks we show that for a series parallel graph a strong equilibrium always exists (both for fair and general connection games). (3) For multi source and sink we show that an extension parallel graph always admits a strong equilibrium in fair connection games. As for the quality of the strong equilibrium we show that in any fair connection games the cost of a strong equilibrium is Θ(log n) from the optimal solution, where n is the number of players. (This should be contrasted with the Ω(n) price of anarchy for the same setting.) For single source general connection games and single source single sink fair connection games, we show that a strong equilibrium is always an optimal solution.
Designing networks with good equilibria
 In SODA ’08
, 2007
"... In a network with selfish users, designing and deploying a protocol determines the rules of the game by which end users interact with each other and with the network. We study the problem of designing a protocol to optimize the equilibrium behavior of the induced network game. We consider network co ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
In a network with selfish users, designing and deploying a protocol determines the rules of the game by which end users interact with each other and with the network. We study the problem of designing a protocol to optimize the equilibrium behavior of the induced network game. We consider network costsharing games, where the set of Nash equilibria depends fundamentally on the choice of an edge costsharing protocol. Previous research focused on the Shapley protocol, in which the cost of each edge is shared equally among its users. We systematically study the design of optimal costsharing protocols for undirected and directed graphs, singlesink and multicommodity networks, different classes of costsharing methods, and different measures of the inefficiency of equilibria. One of our main technical tools is a complete characterization of the uniform costsharing protocols—protocols that are designed without foreknowledge of or assumptions on the network in which they will be deployed. We use this characterization result to identify the optimal uniform protocol in several scenarios: for example, the Shapley protocol is optimal in directed graphs, while the optimal protocol in undirected graphs, a simple priority scheme, has exponentially smaller worstcase price of anarchy than the Shapley protocol. We also provide several matching upper and lower bounds on the bestpossible performance of nonuniform costsharing protocols.
On the Value of Coordination in Network Design
"... We study network design games where n selfinterested agents have to form a network by purchasing links from a given set of edges. We consider Shapley cost sharing mechanisms that split the cost of an edge in a fair manner among the agents using the edge. It is well known that the price of anarchy o ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
We study network design games where n selfinterested agents have to form a network by purchasing links from a given set of edges. We consider Shapley cost sharing mechanisms that split the cost of an edge in a fair manner among the agents using the edge. It is well known that the price of anarchy of these games is as high as n. Therefore, recent research has focused on evaluating the price of stability, i.e. the cost of the best Nash equilibrium relative to the social optimum. In this paper we investigate to which extent coordination among agents can improve the quality of solutions. We resort to the concept of strong Nash equilibria, which were introduced by Aumann and are resilient to deviations by coalitions of agents. We analyze the price of anarchy of strong Nash equilibria and develop lower and upper bounds for unweighted and weighted games in both directed and undirected graphs. These bounds are tight or nearly tight for many scenarios. It shows that using coordination, the price of anarchy drops from linear to logarithmic bounds. We complement these results by also proving the first superconstant lower bound on the price of stability of standard equilibria (without coordination) in undirected graphs. More specifically, we show a lower bound of Ω(log W / log log W) for weighted games, where W is the total weight of all the agents. This almost matches the known upper bound of O(log W). Our results imply that, for most settings, the worstcase performance ratios of strong coordinated equilibria are essentially always as good as the performance ratios of the best equilibria achievable without coordination. These settings include unweighted games in directed graphs as well as weighted games in both directed and undirected graphs.