Results 1  10
of
215
A Framework for Defining Logics
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1993
"... The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of ariti ..."
Abstract

Cited by 807 (45 self)
 Add to MetaCart
The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of arities. The treatment of rules and proofs focuses on his notion of a judgement. Logics are represented in LF via a new principle, the judgements as types principle, whereby each judgement is identified with the type of its proofs. This allows for a smooth treatment of discharge and variable occurrence conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higherorder judgements and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logicindependent tools such as proof editors and proof checkers can be constructed.
A Syntactic Approach to Type Soundness
 INFORMATION AND COMPUTATION
, 1992
"... We present a new approach to proving type soundness for Hindley/Milnerstyle polymorphic type systems. The keys to our approach are (1) an adaptation of subject reduction theorems from combinatory logic to programming languages, and (2) the use of rewriting techniques for the specification of the la ..."
Abstract

Cited by 634 (25 self)
 Add to MetaCart
(Show Context)
We present a new approach to proving type soundness for Hindley/Milnerstyle polymorphic type systems. The keys to our approach are (1) an adaptation of subject reduction theorems from combinatory logic to programming languages, and (2) the use of rewriting techniques for the specification of the language semantics. The approach easily extends from polymorphic functional languages to imperative languages that provide references, exceptions, continuations, and similar features. We illustrate the technique with a type soundness theorem for the core of Standard ML, which includes the first type soundness proof for polymorphic exceptions and continuations.
Computational Interpretations of Linear Logic
 Theoretical Computer Science
, 1993
"... We study Girard's Linear Logic from the point of view of giving a concrete computational interpretation of the logic, based on the CurryHoward isomorphism. In the case of Intuitionistic Linear Logic, this leads to a refinement of the lambda calculus, giving finer control over order of evaluati ..."
Abstract

Cited by 320 (3 self)
 Add to MetaCart
(Show Context)
We study Girard's Linear Logic from the point of view of giving a concrete computational interpretation of the logic, based on the CurryHoward isomorphism. In the case of Intuitionistic Linear Logic, this leads to a refinement of the lambda calculus, giving finer control over order of evaluation and storage allocation, while maintaining the logical content of programs as proofs, and computation as cutelimination.
A Foundation for Actor Computation
 Journal of Functional Programming
, 1998
"... We present an actor language which is an extension of a simple functional language, and provide a precise operational semantics for this extension. Actor configurations represent open distributed systems, by which we mean that the specification of an actor system explicitly takes into account the in ..."
Abstract

Cited by 257 (51 self)
 Add to MetaCart
(Show Context)
We present an actor language which is an extension of a simple functional language, and provide a precise operational semantics for this extension. Actor configurations represent open distributed systems, by which we mean that the specification of an actor system explicitly takes into account the interface with external components. We study the composability of such systems. We define and study various notions of testing equivalence on actor expressions and configurations. The model we develop provides fairness. An important result is that the three forms of equivalence, namely, convex, must, and may equivalences, collapse to two in the presence of fairness. We further develop methods for proving laws of equivalence and provide example proofs to illustrate our methodology.
ParameterPassing and the Lambda Calculus
, 1991
"... The choice of a parameterpassing technique is an important decision in the design of a highlevel programming language. To clarify some of the semantic aspects of the decision, we develop, analyze, and compare modifications of the calculus for the most common parameterpassing techniques, i.e., ca ..."
Abstract

Cited by 216 (24 self)
 Add to MetaCart
(Show Context)
The choice of a parameterpassing technique is an important decision in the design of a highlevel programming language. To clarify some of the semantic aspects of the decision, we develop, analyze, and compare modifications of the calculus for the most common parameterpassing techniques, i.e., callbyvalue and callbyname combined with passbyworth and passby reference, respectively. More specifically, for each parameterpassing technique we provide 1. a program rewriting semantics for a language with sideeffects and firstclass procedures based on the respective parameterpassing technique; 2. an equational theory that is derived from the rewriting semantics in a uniform manner; 3. a formal analysis of the correspondence between the calculus and the semantics; and 4. a strong normalization theorem for the imperative fragment of the theory (when applicable). A comparison of the various systems reveals that Algol's callbyname indeed satisfies the wellknown fi rule of the orig...
Typed Memory Management in a Calculus of Capabilities
, 2000
"... Regionbased memory management is an alternative to standard tracing garbage collection that makes potentially dangerous operations such as memory deallocation explicit but verifiably safe. In this article, we present a new compiler intermediate language, called the Capability Calculus, that supp ..."
Abstract

Cited by 215 (22 self)
 Add to MetaCart
Regionbased memory management is an alternative to standard tracing garbage collection that makes potentially dangerous operations such as memory deallocation explicit but verifiably safe. In this article, we present a new compiler intermediate language, called the Capability Calculus, that supports regionbased memory management and enjoys a provably safe type system. Unlike previous regionbased type systems, region lifetimes need not be lexically scoped and yet the language may be checked for safety without complex analyses. Therefore, our type system may be deployed in settings such as extensible operating systems where both the performance and safety of untrusted code is important.
Alias Types
 In European Symposium on Programming
, 1999
"... Linear type systems allow destructive operations such as object deallocation and imperative updates of functional data structures. These operations and others, such as the ability to reuse memory at di#erent types, are essential in lowlevel typed languages. However, traditional linear type syste ..."
Abstract

Cited by 184 (24 self)
 Add to MetaCart
(Show Context)
Linear type systems allow destructive operations such as object deallocation and imperative updates of functional data structures. These operations and others, such as the ability to reuse memory at di#erent types, are essential in lowlevel typed languages. However, traditional linear type systems are too restrictive for use in lowlevel code where it is necessary to exploit pointer aliasing. We present a new typed language that allows functions to specify the shape of the store that they expect and to track the flow of pointers through a computation. Our type system is expressive enough to represent pointer aliasing and yet safely permit destructive operations.
On the Observable Properties of Higher Order Functions that Dynamically Create Local Names
 IN MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PROC. 18TH INT. SYMP
, 1993
"... The research reported in this paper is concerned with the problem of reasoning about properties of higher order functions involving state. It is motivated by the desire to identify what, if any, are the difficulties created purely by locality of state, independent of other properties such as sideef ..."
Abstract

Cited by 131 (14 self)
 Add to MetaCart
(Show Context)
The research reported in this paper is concerned with the problem of reasoning about properties of higher order functions involving state. It is motivated by the desire to identify what, if any, are the difficulties created purely by locality of state, independent of other properties such as sideeffects, exceptional termination and nontermination due to recursion. We consider a simple language (equivalent to a fragment of Standard ML) of typed, higher order functions that can dynamically create fresh names. Names are created with local scope, can be tested for equality and can be passed around via function application, but that is all. we demonstrate
A New Deconstructive Logic: Linear Logic
, 1995
"... The main concern of this paper is the design of a noetherian and confluent normalization for LK 2 (that is, classical second order predicate logic presented as a sequent calculus). The method we present is powerful: since it allows us to recover as fragments formalisms as seemingly different a ..."
Abstract

Cited by 127 (11 self)
 Add to MetaCart
The main concern of this paper is the design of a noetherian and confluent normalization for LK 2 (that is, classical second order predicate logic presented as a sequent calculus). The method we present is powerful: since it allows us to recover as fragments formalisms as seemingly different as Girard's LC and Parigot's , FD ([9, 11, 27, 31]), delineates other viable systems as well, and gives means to extend the Krivine/Leivant paradigm of `programmingwithproofs' ([22, 23]) to classical logic; it is painless: since we reduce strong normalization and confluence to the same properties for linear logic (for nonadditive proof nets, to be precise) using appropriate embeddings (socalled decorations); it is unifying: it organizes known solutions in a simple pattern that makes apparent the how and why of their making. A comparison of our method to that of embedding LK into LJ (intuitionistic sequent calculus) brings to the fore the latter's defects for these `deconstructi...