Results 1  10
of
10
Folding and Unfolding in Computational Geometry
"... Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain ..."
Abstract

Cited by 53 (4 self)
 Add to MetaCart
Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain be straightened?
Ununfoldable polyhedra with convex faces
 COMPUT. GEOM. THEORY APPL
, 2002
"... Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex fa ..."
Abstract

Cited by 26 (11 self)
 Add to MetaCart
Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that “open” polyhedra with triangular faces may not be unfoldable no matter how they are cut.
Recent Results in Computational Origami
 In Proceedings of the 3rd International Meeting of Origami Science, Math, and Education
, 2001
"... Computational origami is a recent branch of computer science studying efficient algorithms for solving paperfolding problems. This field essentially began with Robert Lang's work on algorithmic origami design [25], starting around 1993. Since then, the field of computational origami has grown signi ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
Computational origami is a recent branch of computer science studying efficient algorithms for solving paperfolding problems. This field essentially began with Robert Lang's work on algorithmic origami design [25], starting around 1993. Since then, the field of computational origami has grown significantly. The purpose of this paper is to survey the work in the field, with a focus on recent results, and to present several open problems that remain. The survey cannot hope to be complete, but we attempt to cover most areas of interest.
Folding and Unfolding
 in Computational Geometry. 2004. Monograph in preparation
, 2001
"... author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Acknowledgments My time as a graduate student has been the best period of my life so far, ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Acknowledgments My time as a graduate student has been the best period of my life so far, and for that wonderful experience I owe many thanks. I had two excellent advisors, Anna Lubiw and Ian Munro. I started working with Anna after I took her two classes on algorithms and computational geometry during my Master’s, which got me excited about both these areas, and even caused me to switch entire fields of computer science, from distributed systems to theory and algorithms. Anna introduced me to Ian when some of our problems in computational geometry turned out to have large data structural components, and my work with Ian blossomed from there. The sets of problems I worked on with Anna and Ian diverged, and both remain my primary interests. Anna and Ian have had a profound influence throughout my academic career. At the most
Reconfigurations of polygonal structures
, 2005
"... This thesis contains new results on the subject of polygonal structure reconfiguration. Specifically, the types of structures considered here are polygons, polygonal chains, triangulations, and polyhedral surfaces. A sequence of vertices (points), successively joined by straight edges, is a polygona ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
This thesis contains new results on the subject of polygonal structure reconfiguration. Specifically, the types of structures considered here are polygons, polygonal chains, triangulations, and polyhedral surfaces. A sequence of vertices (points), successively joined by straight edges, is a polygonal chain. If the sequence is cyclic, then the object is a polygon. A planar triangulation is a set of vertices with a maximal number of noncrossing straight edges joining them. A polyhedral surface is a threedimensional structure consisting of flat polygonal faces that are joined by common edges. For each of these structures there exist several methods of reconfiguration. Any such method must provide a welldefined way of transforming one instance of a structure to any other. Several types of reconfigurations are reviewed in the introduction, which is followed by new results. We begin with efficient algorithms for comparing monotone chains. Next, we prove that flat chains with unitlength edges and angles within a wide range always admit reconfigurations, under the dihedral model of motion. In this model, angles and edge lengths are preserved. For the universal
The Foldings of a Square to Convex Polyhedra
"... Abstract. The structure of the set of all convex polyhedra foldable from a square is detailed. It is proved that five combinatorially distinct nondegenerate polyhedra, and four different flat polyhedra, are realizable. All the polyhedra are continuously deformable into each other, with the space of ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. The structure of the set of all convex polyhedra foldable from a square is detailed. It is proved that five combinatorially distinct nondegenerate polyhedra, and four different flat polyhedra, are realizable. All the polyhedra are continuously deformable into each other, with the space of polyhedra having the topology of four connected rings. 1
A Pseudopolynomial Algorithm for Alexandrov’s Theorem
, 2009
"... Alexandrov’s Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of some convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution is the polyhedron corresponding t ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Alexandrov’s Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of some convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution is the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time.
Creative Commons Attribution–Share Alike License 3.0.
, 2008
"... Alexandrov’s Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of some convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution is the polyhedron corresponding t ..."
Abstract
 Add to MetaCart
Alexandrov’s Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of some convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution is the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron given the metric, and prove a pseudopolynomial
Common EdgeUnzippings for Tetrahedra
, 2011
"... It is shown that there are examples of distinct polyhedra, each with a Hamiltonian path of edges, which when cut, unfolds the surfaces to a common net. In particular, it is established for infinite classes of triples of tetrahedra. 1 ..."
Abstract
 Add to MetaCart
It is shown that there are examples of distinct polyhedra, each with a Hamiltonian path of edges, which when cut, unfolds the surfaces to a common net. In particular, it is established for infinite classes of triples of tetrahedra. 1
Mediated Matter Group Media Lab
"... Origami is traditionally implemented in paper, which is a passive material. This research explores the use of material with embedded electronics such as PCB (Printed Circuit Boards) as the medium for origami folding in order to create an interactive folding experience and to generate foldable object ..."
Abstract
 Add to MetaCart
Origami is traditionally implemented in paper, which is a passive material. This research explores the use of material with embedded electronics such as PCB (Printed Circuit Boards) as the medium for origami folding in order to create an interactive folding experience and to generate foldable objects with added functionalities. PCBs are produced as 2D shapes. By folding PCB arrays it is possible to create 3D objects that contain electronic functions. Conductivity, output devices (such as Light Emitting Diodes) and microcontroller computation can create an interactive folding experience, for user guidance and verification of the folding. We call this approach and methodology PCB Origami. The work presented in this paper describes two unique interaction and fabrication techniques for creating and folding electronic materials. We demonstrate prototypes and present verification/evaluation strategies for guiding the user through the folding process. 1