Results 1 
2 of
2
Computational and Inferential Difficulties With Mixture Posterior Distributions
 Journal of the American Statistical Association
, 1999
"... This paper deals with both exploration and interpretation problems related to posterior distributions for mixture models. The specification of mixture posterior distributions means that the presence of k! modes is known immediately. Standard Markov chain Monte Carlo techniques usually have difficult ..."
Abstract

Cited by 160 (14 self)
 Add to MetaCart
This paper deals with both exploration and interpretation problems related to posterior distributions for mixture models. The specification of mixture posterior distributions means that the presence of k! modes is known immediately. Standard Markov chain Monte Carlo techniques usually have difficulties with wellseparated modes such as occur here; the Markov chain Monte Carlo sampler stays within a neighbourhood of a local mode and fails to visit other equally important modes. We show that exploration of these modes can be imposed on the Markov chain Monte Carlo sampler using tempered transitions based on Langevin algorithms. However, as the prior distribution does not distinguish between the different components, the posterior mixture distribution is symmetric and thus standard estimators such as posterior means cannot be used. Since this is also true for most nonsymmetric priors, we propose alternatives for Bayesian inference for permutation invariant posteriors, including a cluster...
Double Markov Random Fields and Bayesian Image Segmentation
, 2002
"... Markov random fields are used extensively in modelbased approaches to image segmentation and, under the Bayesian paradigm, are implemented through Markov chain Monte Carlo (MCMC) methods. In this paper, we describe a class of such models (the double Markov random field) for images composed of severa ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
(Show Context)
Markov random fields are used extensively in modelbased approaches to image segmentation and, under the Bayesian paradigm, are implemented through Markov chain Monte Carlo (MCMC) methods. In this paper, we describe a class of such models (the double Markov random field) for images composed of several textures, which we consider to be the natural hierarchical model for such a task. We show how several of the Bayesian approaches in the literature can be viewed as modifications of this model, made in order to make MCMC implementation possible. From a simulation study, conclusions are made concerning the performance of these modified models.