Results 1 
1 of
1
Minimal Invariant Spaces in Formal Topology
 The Journal of Symbolic Logic
, 1996
"... this paper, we extend our analysis to the case where X is a boolean space, that is compact totally disconnected. In such a case, we give a pointfree formulation of the existence of a minimal subspace for any continuous map f : X!X: We show that such minimal subspaces can be described as points of a ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
(Show Context)
this paper, we extend our analysis to the case where X is a boolean space, that is compact totally disconnected. In such a case, we give a pointfree formulation of the existence of a minimal subspace for any continuous map f : X!X: We show that such minimal subspaces can be described as points of a suitable formal topology, and the "existence" of such points become the problem of the consistency of the theory describing a generic point of this space. We show the consistency of this theory by building effectively and algebraically a topological model. As an application, we get a new, purely algebraic proof, of the minimal property of [3]. We show then in detail how this property can be used to give a proof of (a special case of) van der Waerden's theorem on arithmetical progression, that is "similar in structure" to the topological proof [6, 8], but which uses a simple algebraic remark (proposition 1) instead of Zorn's lemma. A last section tries to place this work in a wider context, as a reformulation of Hilbert's method of introduction/elimination of ideal elements. 1 Construction of Minimal Invariant Subspace