Results 1 
3 of
3
The Carmichael Numbers up to 10^15
, 1992
"... There are 105212 Carmichael numbers up to 10 : we describe the calculations. ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
There are 105212 Carmichael numbers up to 10 : we describe the calculations.
Building Pseudoprimes With A Large Number Of Prime Factors
, 1995
"... We extend the method due originally to Loh and Niebuhr for the generation of Carmichael numbers with a large number of prime factors to other classes of pseudoprimes, such as Williams's pseudoprimes and elliptic pseudoprimes. We exhibit also some new Dickson pseudoprimes as well as superstrong ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
We extend the method due originally to Loh and Niebuhr for the generation of Carmichael numbers with a large number of prime factors to other classes of pseudoprimes, such as Williams's pseudoprimes and elliptic pseudoprimes. We exhibit also some new Dickson pseudoprimes as well as superstrong Dickson pseudoprimes.
Pseudoprimes: A Survey Of Recent Results
, 1992
"... this paper, we aim at presenting the most recent results achieved in the theory of pseudoprime numbers. First of all, we make a list of all pseudoprime varieties existing so far. This includes Lucaspseudoprimes and the generalization to sequences generated by integer polynomials modulo N , elliptic ..."
Abstract
 Add to MetaCart
this paper, we aim at presenting the most recent results achieved in the theory of pseudoprime numbers. First of all, we make a list of all pseudoprime varieties existing so far. This includes Lucaspseudoprimes and the generalization to sequences generated by integer polynomials modulo N , elliptic pseudoprimes. We discuss the making of tables and the consequences on the design of very fast primality algorithms for small numbers. Then, we describe the recent work of Alford, Granville and Pomerance, in which they prove that there