Results 1 
2 of
2
Degrees of random sets
, 1991
"... An explicit recursiontheoretic definition of a random sequence or random set of natural numbers was given by MartinLöf in 1966. Other approaches leading to the notions of nrandomness and weak nrandomness have been presented by Solovay, Chaitin, and Kurtz. We investigate the properties of nrando ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
An explicit recursiontheoretic definition of a random sequence or random set of natural numbers was given by MartinLöf in 1966. Other approaches leading to the notions of nrandomness and weak nrandomness have been presented by Solovay, Chaitin, and Kurtz. We investigate the properties of nrandom and weakly nrandom sequences with an emphasis on the structure of their Turing degrees. After an introduction and summary, in Chapter II we present several equivalent definitions of nrandomness and weak nrandomness including a new definition in terms of a forcing relation analogous to the characterization of ngeneric sequences in terms of Cohen forcing. We also prove that, as conjectured by Kurtz, weak nrandomness is indeed strictly weaker than nrandomness. Chapter III is concerned with intrinsic properties of nrandom sequences. The main results are that an (n + 1)random sequence A satisfies the condition A (n) ≡T A⊕0 (n) (strengthening a result due originally to Sacks) and that nrandom sequences satisfy a number of strong independence properties, e.g., if A ⊕ B is nrandom then A is nrandom relative to B. It follows that any countable distributive lattice can be embedded
Effectivizing Inseparability
, 1991
"... Smullyan's notion of effectively inseparable pairs of sets is not the best effective /constructive analog of Kleene's notion of pairs of sets inseparable by a recursive set. We present a corrected notion of effectively inseparable pairs of sets, prove a characterization of our notion, and show that ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Smullyan's notion of effectively inseparable pairs of sets is not the best effective /constructive analog of Kleene's notion of pairs of sets inseparable by a recursive set. We present a corrected notion of effectively inseparable pairs of sets, prove a characterization of our notion, and show that the pairs of index sets effectively inseparable in Smullyan's sense are the same as those effectively inseparable in ours. In fact we characterize the pairs of index sets effectively inseparable in either sense thereby generalizing Rice's Theorem. For subrecursive index sets we have sufficient conditions for various inseparabilities to hold. For inseparability by sets in the same subrecursive class we have a characterization. The latter essentially generalizes Kozen's (and Royer's later) Subrecursive Rice Theorem, and the proof of each result about subrecursive index sets is presented "Rogers style" with care to observe subrecursive restrictions. There are pairs of sets effectively inseparab...