Results 1 
1 of
1
The complexity of type inference for higherorder typed lambda calculi
 In. Proc. 18th ACM Symposium on the Principles of Programming Languages
, 1991
"... We analyse the computational complexity of type inference for untyped X,terms in the secondorder polymorphic typed Xcalculus (F2) invented by Girard and Reynolds, as well as higherorder extensions F3,F4,...,/ ^ proposed by Girard. We prove that recognising the i^typable terms requires exponential ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
We analyse the computational complexity of type inference for untyped X,terms in the secondorder polymorphic typed Xcalculus (F2) invented by Girard and Reynolds, as well as higherorder extensions F3,F4,...,/ ^ proposed by Girard. We prove that recognising the i^typable terms requires exponential time, and for Fa the problem is nonelementary. We show as well a sequence of lower bounds on recognising the i^typable terms, where the bound for Fk+1 is exponentially larger than that for Fk. The lower bounds are based on generic simulation of Turing Machines, where computation is simulated at the expression and type level simultaneously. Nonaccepting computations are mapped to nonnormalising reduction sequences, and hence nontypable terms. The accepting computations are mapped to typable terms, where higherorder types encode reduction sequences, and firstorder types encode the entire computation as a circuit, based on a unification simulation of Boolean logic. A primary technical tool in this reduction is the composition of polymorphic functions having different domains and ranges. These results are the first nontrivial lower bounds on type inference for the Girard/Reynolds