Results 1 
2 of
2
The complexity of type inference for higherorder typed lambda calculi
 In. Proc. 18th ACM Symposium on the Principles of Programming Languages
, 1991
"... We analyse the computational complexity of type inference for untyped X,terms in the secondorder polymorphic typed Xcalculus (F2) invented by Girard and Reynolds, as well as higherorder extensions F3,F4,...,/ ^ proposed by Girard. We prove that recognising the i^typable terms requires exponential ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
We analyse the computational complexity of type inference for untyped X,terms in the secondorder polymorphic typed Xcalculus (F2) invented by Girard and Reynolds, as well as higherorder extensions F3,F4,...,/ ^ proposed by Girard. We prove that recognising the i^typable terms requires exponential time, and for Fa the problem is nonelementary. We show as well a sequence of lower bounds on recognising the i^typable terms, where the bound for Fk+1 is exponentially larger than that for Fk. The lower bounds are based on generic simulation of Turing Machines, where computation is simulated at the expression and type level simultaneously. Nonaccepting computations are mapped to nonnormalising reduction sequences, and hence nontypable terms. The accepting computations are mapped to typable terms, where higherorder types encode reduction sequences, and firstorder types encode the entire computation as a circuit, based on a unification simulation of Boolean logic. A primary technical tool in this reduction is the composition of polymorphic functions having different domains and ranges. These results are the first nontrivial lower bounds on type inference for the Girard/Reynolds
Quantifier Elimination and Parametric Polymorphism in Programming Languages
 J. Functional Programming
, 1992
"... We present a simple and easy to understand explanation of ML type inference and parametric polymorphism within the framework of type monomorphism, as in the first order typed lambda calculus. We prove the equivalence of this system with the standard interpretation using type polymorphism, and extend ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We present a simple and easy to understand explanation of ML type inference and parametric polymorphism within the framework of type monomorphism, as in the first order typed lambda calculus. We prove the equivalence of this system with the standard interpretation using type polymorphism, and extend the equivalence to include polymorphic fixpoints. The monomorphic interpretation gives a purely combinatorial understanding of the type inference problem, and is a classic instance of quantifier elimination, as well as an example of Gentzenstyle cut elimination in the framework of the CurryHoward propositionsastypes analogy. Supported by NSF Grant CCR9017125, and grants from Texas Instruments and from the Tyson Foundation. 1 Introduction In his influential paper, "A theory of type polymorphism in programming," Robin Milner proposed an extension to the first order typed calculus which has become known as the core of the ML programming language [Mil78, HMT90]. The extension augment...