Results 1  10
of
100
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2350 (12 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple notion of monotone reducibility and exhibit complete problems. This provides a framework for stating existing results and asking new questions. We show that mNL (monotone nondeterministic logspace) is not closed under complementation, in contrast to Immerman's and Szelepcs 'enyi's nonmonotone result [Imm88, Sze87] that NL = coNL; this is a simple extension of the monotone circuit depth lower bound of Karchmer and Wigderson [KW90] for stconnectivity. We also consider mBWBP (monotone bounded width branching programs) and study the question of whether mBWBP is properly contained in mNC 1 , motivated by Barrington's result [Bar89] that BWBP = NC 1 . Although we cannot answer t...
Almost Optimal Lower Bounds for Small Depth Circuits
 RANDOMNESS AND COMPUTATION
, 1989
"... We give improved lower bounds for the size of small depth circuits computing several functions. In particular we prove almost optimal lower bounds for the size of parity circuits. Further we show that there are functions computable in polynomial size and depth k but requires exponential size when ..."
Abstract

Cited by 237 (7 self)
 Add to MetaCart
We give improved lower bounds for the size of small depth circuits computing several functions. In particular we prove almost optimal lower bounds for the size of parity circuits. Further we show that there are functions computable in polynomial size and depth k but requires exponential size when the depth is restricted to k1. Our main lemma which is of independent interest states that by using a random restriction we can convert an AND of small ORs to an OR of small ANDs and conversely.
Boundedwidth polynomialsize branching programs recognize exactly those languages
 in NC’, in “Proceedings, 18th ACM STOC
, 1986
"... We show that any language recognized by an NC ’ circuit (fanin 2, depth O(log n)) can be recognized by a width5 polynomialsize branching program. As any boundedwidth polynomialsize branching program can be simulated by an NC ’ circuit, we have that the class of languages recognized by such prog ..."
Abstract

Cited by 209 (13 self)
 Add to MetaCart
We show that any language recognized by an NC ’ circuit (fanin 2, depth O(log n)) can be recognized by a width5 polynomialsize branching program. As any boundedwidth polynomialsize branching program can be simulated by an NC ’ circuit, we have that the class of languages recognized by such programs is exactly nonuniform NC’. Further, following
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Learning Decision Trees using the Fourier Spectrum
, 1991
"... This work gives a polynomial time algorithm for learning decision trees with respect to the uniform distribution. (This algorithm uses membership queries.) The decision tree model that is considered is an extension of the traditional boolean decision tree model that allows linear operations in each ..."
Abstract

Cited by 182 (10 self)
 Add to MetaCart
This work gives a polynomial time algorithm for learning decision trees with respect to the uniform distribution. (This algorithm uses membership queries.) The decision tree model that is considered is an extension of the traditional boolean decision tree model that allows linear operations in each node (i.e., summation of a subset of the input variables over GF (2)). This paper shows how to learn in polynomial time any function that can be approximated (in norm L 2 ) by a polynomially sparse function (i.e., a function with only polynomially many nonzero Fourier coefficients). The authors demonstrate that any function f whose L 1 norm (i.e., the sum of absolute value of the Fourier coefficients) is polynomial can be approximated by a polynomially sparse function, and prove that boolean decision trees with linear operations are a subset of this class of functions. Moreover, it is shown that the functions with polynomial L 1 norm can be learned deterministically. The algorithm can a...
On the power of smalldepth threshold circuits
 Proceedings 31st Annual IEEE Symposium on Foundations of Computer Science
, 1990
"... Abstract. Weinvestigate the power of threshold circuits of small depth. In particular, we give functions that require exponential size unweighted threshold circuits of depth 3 when we restrict the bottom fanin. We also prove that there are monotone functions fk that can be computed in depth k and li ..."
Abstract

Cited by 103 (2 self)
 Add to MetaCart
Abstract. Weinvestigate the power of threshold circuits of small depth. In particular, we give functions that require exponential size unweighted threshold circuits of depth 3 when we restrict the bottom fanin. We also prove that there are monotone functions fk that can be computed in depth k and linear size ^ � _circuits but require exponential size to compute by a depth k; 1 monotone weighted threshold circuit. Key words. Circuit complexity, monotone circuits, threshold circuits, lower bounds Subject classi cations. 68Q15, 68Q99 1.
The Expressive Power of Voting Polynomials
 Combinatorica
, 1993
"... We consider the problem of approximating a Boolean function f : f0; 1g n ! f0; 1g by the sign of an integer polynomial p of degree k. For us, a polynomial p(x) predicts the value of f(x) if, whenever p(x) 0, f(x) = 1, and whenever p(x) ! 0, f(x) = 0. A lowdegree polynomial p is a good approxima ..."
Abstract

Cited by 90 (9 self)
 Add to MetaCart
We consider the problem of approximating a Boolean function f : f0; 1g n ! f0; 1g by the sign of an integer polynomial p of degree k. For us, a polynomial p(x) predicts the value of f(x) if, whenever p(x) 0, f(x) = 1, and whenever p(x) ! 0, f(x) = 0. A lowdegree polynomial p is a good approximator for f if it predicts f at almost all points. Given a positive integer k, and a Boolean function f , we ask, "how good is the best degree k approximation to f?" We introduce a new lower bound technique which applies to any Boolean function. We show that the lower bound technique yields tight bounds in the case f is parity. Minsky and Papert [10] proved that a perceptron can not compute parity; our bounds indicate exactly how well Yale University, Dept. of Computer Science, P.O. Box 208285, New Haven CT 065208285. y Email: aspnesjames@cs.yale.edu. z Email: beigelrichard@cs.yale.edu. Supported in part by NSF grants CCR8808949 and CCR8958528. x CarnegieMellon University, Schoo...
Efficient Cryptographic Schemes Provably as Secure as Subset Sum
 Journal of Cryptology
, 1993
"... We show very efficient constructions for a pseudorandom generator and for a universal oneway hash function based on the intractability of the subset sum problem for certain dimensions. (Pseudorandom generators can be used for private key encryption and universal oneway hash functions for sign ..."
Abstract

Cited by 78 (8 self)
 Add to MetaCart
We show very efficient constructions for a pseudorandom generator and for a universal oneway hash function based on the intractability of the subset sum problem for certain dimensions. (Pseudorandom generators can be used for private key encryption and universal oneway hash functions for signature schemes). The increase in efficiency in our construction is due to the fact that many bits can be generated/hashed with one application of the assumed oneway function. All our construction can be implemented in NC using an optimal number of processors. Part of this work done while both authors were at UC Berkeley and part when the second author was at the IBM Almaden Research Center. Research supported by NSF grant CCR 88  13632. A preliminary version of this paper appeared in Proc. of the 30th Symp. on Foundations of Computer Science, 1989. 1 Introduction Many cryptosystems are based on the intractability of such number theoretic problems such as factoring and discrete logarit...
Parallel SymmetryBreaking in Sparse Graphs
 SIAM J. Disc. Math
, 1987
"... We describe efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. Our primary technique allows us to 3color a rooted tree in O(lg n) time on an EREW PRAM using a linear number of processors. We use th ..."
Abstract

Cited by 73 (2 self)
 Add to MetaCart
We describe efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. Our primary technique allows us to 3color a rooted tree in O(lg n) time on an EREW PRAM using a linear number of processors. We use these techniques to construct fast linear processor algorithms for several problems, including (\Delta + 1)coloring constantdegree graphs and 5coloring planar graphs. We also prove lower bounds for 2coloring directed lists and for finding maximal independent sets in arbitrary graphs. 1 Introduction Some problems for which trivial sequential algorithms exist appear to be much harder to solve in a parallel framework. When converting a sequential algorithm to a parallel one, at each step of the parallel algorithm we have to choose a set of operations which may be executed in parallel. Often, we have to choose these operations from a large set A preliminary version of this paper appear...
Models of Computation  Exploring the Power of Computing
"... Theoretical computer science treats any computational subject for which a good model can be created. Research on formal models of computation was initiated in the 1930s and 1940s by Turing, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language translators, and oper ..."
Abstract

Cited by 57 (7 self)
 Add to MetaCart
Theoretical computer science treats any computational subject for which a good model can be created. Research on formal models of computation was initiated in the 1930s and 1940s by Turing, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language translators, and operating systems were under development and therefore became both the subject and basis for a great deal of theoretical work. The power of computers of this period was limited by slow processors and small amounts of memory, and thus theories (models, algorithms, and analysis) were developed to explore the efficient use of computers as well as the inherent complexity of problems. The former subject is known today as algorithms and data structures, the latter computational complexity. The focus of theoretical computer scientists in the 1960s on languages is reflected in the first textbook on the subject, Formal Languages and Their Relation to Automata by John Hopcroft and Jeffrey Ullman. This influential book led to the creation of many languagecentered theoretical computer science courses; many introductory theory courses today continue to reflect the content of this book and the interests of theoreticians of the 1960s and early 1970s. Although