Results 1 
3 of
3
Semantic Domains
, 1990
"... this report started working on denotational semantics in collaboration with Christopher Strachey. In order to fix some mathematical precision, he took over some definitions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a simple type theory of highertype fu ..."
Abstract

Cited by 148 (3 self)
 Add to MetaCart
this report started working on denotational semantics in collaboration with Christopher Strachey. In order to fix some mathematical precision, he took over some definitions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a simple type theory of highertype functionals. It was only after giving an abstract characterization of the spaces obtained (through the construction of bases) that he realized that recursive definitions of types could be accommodated as welland that the recursive definitions could incorporate function spaces as well. Though it was not the original intention to find semantics of the socalled untyped calculus, such a semantics emerged along with many ways of interpreting a very large variety of languages. A large number of people have made essential contributions to the subsequent developments, and they have shown in particular that domain theory is not one monolithic theory, but that there are several different kinds of constructions giving classes of domains appropriate for different mixtures of constructs. The story is, in fact, far from finished even today. In this report we will only be able to touch on a few of the possibilities, but we give pointers to the literature. Also, we have attempted to explain the foundations in an elementary wayavoiding heavy prerequisites (such as category theory) but still maintaining some level of abstractionwith the hope that such an introduction will aid the reader in going further into the theory. The chapter is divided into seven sections. In the second section we introduce a simple class of ordered structures and discuss the idea of fixed points of continuous functions as meanings for recursive programs. In the third section we discuss computable functions and...
Domain Theoretic Models Of Polymorphism
, 1989
"... We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic calculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theory; th ..."
Abstract

Cited by 34 (2 self)
 Add to MetaCart
We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic calculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theory; the universal types of the calculus are interpreted as the category of continuous sections of the fibration. As a major example a new model for the polymorphic calculus is presented. In it a type is interpreted as a Scott domain. In fact, understanding universal types of the polymorphic calculus as categories of continuous sections appears to be useful generally. For example, the technique also applies to the finitary projection model of Bruce and Longo, and a recent model of Girard. (Indeed the work here was inspired by Girard's and arose through trying to extend the construction of his model to Scott domains.) It is hoped that by pinpointing a key construction this paper will help towards...
Coherence and Consistency in Domains
 IN THIRD ANNUAL SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE
, 1990
"... Almost all of the categories normally used as a mathematical foundation for denotational semantics satisfy a condition known as consistent completeness. The goal of this paper is to explore the possibility of using a different conditionthat of coherencewhich has its origins in topology and log ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
Almost all of the categories normally used as a mathematical foundation for denotational semantics satisfy a condition known as consistent completeness. The goal of this paper is to explore the possibility of using a different conditionthat of coherencewhich has its origins in topology and logic. In particular, we concentrate on those posets whose principal ideals are algebraic lattices and whose topologies are coherent. These form a cartesian closed category which has fixed points for domain equations. It is shown that a "universal domain" exists. Since the construction of this domain seems to be of general significance, a categorical treatment is provided and applied to other classes of domains. Universal domains constructed in this fashion enjoy an additional property: they are saturated. We show that there is exactly one such domain in each of the classes under consideration.