Results 1  10
of
205
Consequences and Limits of Nonlocal Strategies
, 2010
"... Thispaperinvestigatesthepowersandlimitationsofquantum entanglementinthecontext of cooperative games of incomplete information. We give several examples of such nonlocal games where strategies that make use of entanglement outperform all possible classical strategies. One implication ofthese examples ..."
Abstract

Cited by 72 (17 self)
 Add to MetaCart
Thispaperinvestigatesthepowersandlimitationsofquantum entanglementinthecontext of cooperative games of incomplete information. We give several examples of such nonlocal games where strategies that make use of entanglement outperform all possible classical strategies. One implication ofthese examplesis that entanglement canprofoundly affectthesoundness property of twoprover interactive proof systems. We then establish limits on the probability with which strategies making use of entanglement can win restricted types of nonlocal games. These upperbounds mayberegardedasgeneralizationsof Tsirelsontypeinequalities, which place bounds on the extent to which quantum information can allow for the violation of Bell inequalities. We also investigate the amount of entanglement required by optimal and nearly optimal quantum strategies forsome games.
Finite precision measurement nullifies the KochenSpecker theorem
, 1999
"... Only finite precision measurements are experimentally reasonable, and they cannot distinguish a dense subset from its closure. We show that the rational vectors, which are dense in S 2, can be colored so that the contradiction with hidden variable theories provided by KochenSpecker constructions do ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
Only finite precision measurements are experimentally reasonable, and they cannot distinguish a dense subset from its closure. We show that the rational vectors, which are dense in S 2, can be colored so that the contradiction with hidden variable theories provided by KochenSpecker constructions does not obtain. Thus, in contrast to violation of the Bell inequalities, no quantumoverclassical advantage for information processing can be derived from the KochenSpecker theorem alone.
Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory
, 2003
"... Bohmian mechanics is the most naively obvious embedding imaginable of Schrödinger’s equation into a completely coherent physical theory. It describes a world in which particles move in a highly nonNewtonian sort of way, one which may at first appear to have little to do with the spectrum of predict ..."
Abstract

Cited by 29 (14 self)
 Add to MetaCart
Bohmian mechanics is the most naively obvious embedding imaginable of Schrödinger’s equation into a completely coherent physical theory. It describes a world in which particles move in a highly nonNewtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψ its configuration is typically random, with probability density ρ given by ψ², the quantum equilibrium distribution. It also turns out that the entire quantum formalism, operators as observables and all the rest, naturally emerges in Bohmian mechanics from the analysis of “measurements. ” This analysis reveals the status of operators as observables in the description of quantum phenomena, and facilitates a clear view of the range of applicability of the usual quantum mechanical formulas.
Simulating Quantum Mechanics by NonContextual Hidden Variables
, 2000
"... No physical measurement can be performed with infinite precision. This leaves a loophole in the standard nogo arguments against noncontextual hidden variables. All such arguments rely on choosing special sets of quantummechanical observables with measurement outcomes that cannot be simulated non ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
No physical measurement can be performed with infinite precision. This leaves a loophole in the standard nogo arguments against noncontextual hidden variables. All such arguments rely on choosing special sets of quantummechanical observables with measurement outcomes that cannot be simulated noncontextually. As a consequence, these arguments do not exclude the hypothesis that the class of physical measurements in fact corresponds to a dense subset of all theoretically possible measurements with outcomes and quantum probabilities that can be recovered from a noncontextual hidden variable model. We show here by explicit construction that there are indeed such noncontextual hidden variable models, both for projection valued and positive operator valued measurements.
Epistemic and Ontic Quantum Realities
, 2005
"... Quantum theory has provoked intense discussions about its interpretation since its pioneer days, beginning with Bohr’s view of quantum theory as a theory of knowledge. We show that such an epistemic perspective can be consistently complemented by Einstein’s ontically oriented position. ..."
Abstract

Cited by 21 (11 self)
 Add to MetaCart
Quantum theory has provoked intense discussions about its interpretation since its pioneer days, beginning with Bohr’s view of quantum theory as a theory of knowledge. We show that such an epistemic perspective can be consistently complemented by Einstein’s ontically oriented position.
Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems
 Am. J. Phys
, 2001
"... This article presents a general discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the very special correlations that this theory makes possible: they are forbidden by very general arguments based on realism and local causality. In fact, these cor ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
This article presents a general discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the very special correlations that this theory makes possible: they are forbidden by very general arguments based on realism and local causality. In fact, these correlations are completely impossible in any circumstance, except the very special situations designed by physicists especially to observe these purely quantum effects. Another general point that is emphasized is the necessity for the theory to predict the emergence of a single result in a single realization of an experiment. For this purpose, orthodox quantum mechanics introduces a special postulate: the reduction of the state vector, which comes in addition to the Schrödinger evolution postulate. Nevertheless, the presence in parallel of two evolution processes of the same object (the state vector) may be a potential source for conflicts; various attitudes that are possible
Physical versus Computational Complementarity I
, 1996
"... The dichotomy between endophysical/intrinsic and exophysical/extrinsic perception concerns the question of how a model  mathematical, logical, computational  universe is perceived from inside or from outside, [71, 65, 66, 59, 60, 68, 67]. This distinction goes back in time at least to Archimedes, ..."
Abstract

Cited by 20 (19 self)
 Add to MetaCart
The dichotomy between endophysical/intrinsic and exophysical/extrinsic perception concerns the question of how a model  mathematical, logical, computational  universe is perceived from inside or from outside, [71, 65, 66, 59, 60, 68, 67]. This distinction goes back in time at least to Archimedes, reported to have asked for a point outside the world from which one could move the earth. An exophysical perception is realized when the system is laid out and the experimenter peeps at the relevant features without changing the system. The information flows on a oneway road: from the system to the experimenter. An endophysical perception can be realized when the experimenter is part of the system under observation. In such a case one has a twoway informational flow; measurements and entities measured are interchangeable and any attempt to distinguish between them ends up as a convention. The general conception dominating the sciences is that the physical universe is perceivable ...
Quantum entanglement and projective ring geometry
 SIGMA 2, Paper 66
, 2006
"... The paper explores the basic geometrical properties of the observables characterizing twoqubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 1 ..."
Abstract

Cited by 19 (14 self)
 Add to MetaCart
The paper explores the basic geometrical properties of the observables characterizing twoqubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 15×15 multiplication table of the associated fourdimensional matrices exhibits a sofarunnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. All lines in each pencil carry mutually commuting operators; in one of the pencils, which we call the kernel, the observables on two lines share a base of maximally entangled states. The three operators on any line in each pencil represent a row or column of some Mermin’s “magic ” square, thus revealing an inherent geometrical nature of the latter. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of n copies of the Galois field GF(2), with n = 2, 3 and 4.
Multiparty pseudotelepathy
 Proceedings of the 8th International Workshop on Algorithms and Data Structures, Volume 2748 of Lecture Notes in Computer Science
, 2003
"... Quantum information processing is at the crossroads of physics, mathematics and computer science. It is concerned with that we can and cannot do with quantum information that goes beyond the abilities of classical information processing devices. Communication complexity is an area of classical compu ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
Quantum information processing is at the crossroads of physics, mathematics and computer science. It is concerned with that we can and cannot do with quantum information that goes beyond the abilities of classical information processing devices. Communication complexity is an area of classical computer science that aims at quantifying the amount of communication necessary to solve distributed computational problems. Quantum communication complexity uses quantum mechanics to reduce the amount of communication that would be classically required. Pseudotelepathy is a surprising application of quantum information processing to communication complexity. Thanks to entanglement, perhaps the most nonclassical manifestation of quantum mechanics, two or more quantum players can accomplish a distributed task with no need for communication whatsoever, which would be an impossible feat for classical players. After a detailed overview of the principle and purpose of pseudotelepathy, we present a survey of recent and nosorecent work on the subject. In particular, we describe and analyse all the pseudotelepathy games currently known to the authors.
Interpreting the Quantum
, 1997
"... This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of informa ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of information transfer, as opposed to a theory about the mechanics of nonclassical waves or particles, (2) given the informationtheoretic constraints, any mechanical theory of quantum phenomena that includes an account of the measuring instruments that reveal these phenomena must be empirically equivalent to a quantum theory, and (3) assuming the informationtheoretic constraints are in fact satisfied in our world, no mechanical theory of quantum phenomena that includes an account of measurement interactions can be acceptable, and the appropriate aim of physics at the fundamental level then becomes the representation and manipulation of information.