Results 1 
2 of
2
MixedInteger Nonlinear Optimization in Process Synthesis
, 1998
"... The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw ma ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a mixedinteger optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as MixedInteger Nonlinear Programming (MINLP) problems. A number of local optimization algorithms, developed for the solution of this class of problems, are presented in this pap...
Nonlinear and MixedInteger Optimization in Chemical Process Network Systems
"... . The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the Process Synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw ..."
Abstract
 Add to MetaCart
. The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the Process Synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a mixedinteger optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as MixedInteger Nonlinear Programming (MINLP) problems. A number of local optimization algorithms for MINLP problems are outlined in this paper: Generalized Benders Decompositi...