Results 1 
4 of
4
Rigorous Convex Underestimators for General TwiceDifferentiable Problems
 Journal of Global Optimization
, 1996
"... . In order to generate valid convex lower bounding problems for nonconvex twicedifferentiable optimization problems, a method that is based on second order information of general twicedifferentiable functions is presented. Using interval Hessian matrices, valid lower bounds on the eigenvalues ..."
Abstract

Cited by 48 (15 self)
 Add to MetaCart
(Show Context)
. In order to generate valid convex lower bounding problems for nonconvex twicedifferentiable optimization problems, a method that is based on second order information of general twicedifferentiable functions is presented. Using interval Hessian matrices, valid lower bounds on the eigenvalues of such functions are obtained and used in constructing convex underestimators. By solving several nonlinear example problems, it is shown that the lower bounds are sufficiently tight to ensure satisfactory convergence of the ffBB, a branch and bound algorithm which relies on this underestimation procedure [3]. Key words: convex underestimators; twicedifferentiable; interval anlysis; eigenvalues 1. Introduction The mathematical description of many physical phenomena, such as phase equilibrium, or of chemical processes generally requires the introduction of nonconvex functions. As the number of local solutions to a nonconvex optimization problem cannot be predicted a priori, the identifi...
Global Optimization of MINLP Problems in Process Synthesis and Design
 Computers & Chemical Engineering
, 1997
"... : Two new methodologies for the global optimization of MINLP models, the Special structure Mixed Integer Nonlinear ffBB, SMINffBB, and the General structure Mixed Integer Nonlinear ffBB, GMINffBB, are presented. Their theoretical foundations provide guarantees that the global optimum solution of ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
(Show Context)
: Two new methodologies for the global optimization of MINLP models, the Special structure Mixed Integer Nonlinear ffBB, SMINffBB, and the General structure Mixed Integer Nonlinear ffBB, GMINffBB, are presented. Their theoretical foundations provide guarantees that the global optimum solution of MINLPs involving twicedifferentiable nonconvex functions in the continuous variables can be identified. The conditions imposed on the functionality of the binary variables differ for each method : linear and mixed bilinear terms can be treated with the SMINffBB; mixed nonlinear terms whose continuous relaxation is twicedifferentiable are handled by the GMINffBB. While both algorithms use the concept of a branch & bound tree, they rely on fundamentally different bounding and branching strategies. In the GMINffBB algorithm, lower (upper) bounds at each node result from the solution of convex (nonconvex) MINLPs derived from the original problem. The construction of convex lower bound...
MixedInteger Nonlinear Optimization in Process Synthesis
, 1998
"... The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw ma ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a mixedinteger optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as MixedInteger Nonlinear Programming (MINLP) problems. A number of local optimization algorithms, developed for the solution of this class of problems, are presented in this pap...
Nonlinear and MixedInteger Optimization in Chemical Process Network Systems
, 1998
"... The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the Process Synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw ..."
Abstract
 Add to MetaCart
The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the Process Synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a mixedinteger optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as MixedInteger Nonlinear Programming (MINLP) problems. A number of local optimization algorithms for MINLP problems are outlined in this paper: Generalized Benders Decompositi...