Results 1 
3 of
3
Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Loglinear Models
 Biometrika
, 1996
"... this paper, we will only consider undirected graphical models. For details of Bayesian model selection for directed graphical models see Madigan et al (1995). An (undirected) graphical model is determined by a set of conditional independence constraints of the form `fl 1 is independent of fl 2 condi ..."
Abstract

Cited by 80 (12 self)
 Add to MetaCart
this paper, we will only consider undirected graphical models. For details of Bayesian model selection for directed graphical models see Madigan et al (1995). An (undirected) graphical model is determined by a set of conditional independence constraints of the form `fl 1 is independent of fl 2 conditional on all other fl i 2 C'. Graphical models are so called because they can each be represented as a graph with vertex set C and an edge between each pair fl 1 and fl 2 unless fl 1 and fl 2 are conditionally independent as described above. Darroch, Lauritzen and Speed (1980) show that each graphical loglinear model is hierarchical, with generators given by the cliques (complete subgraphs) of the graph. The total number of possible graphical models is clearly given by 2 (
Summary Bayesian Inference for Categorical Data Analysis
"... This article surveys Bayesian methods for categorical data analysis, with primary emphasis on contingency table analysis. Early innovations were proposed by Good (1953, 1956, 1965) for smoothing proportions in contingency tables and by Lindley (1964) for inference about odds ratios. These approache ..."
Abstract
 Add to MetaCart
This article surveys Bayesian methods for categorical data analysis, with primary emphasis on contingency table analysis. Early innovations were proposed by Good (1953, 1956, 1965) for smoothing proportions in contingency tables and by Lindley (1964) for inference about odds ratios. These approaches primarily used conjugate beta and Dirichlet priors. Altham (1969, 1971) presented Bayesian analogs of smallsample frequentist tests for 2×2 tables using such priors. An alternative approach using normal priors for logits received considerable attention in the 1970s by Leonard and others (e.g., Leonard 1972). Adopted usually in a hierarchical form, the logitnormal approach allows greater flexibility and scope for generalization. The 1970s also saw considerable interest in loglinear modeling. The advent of modern computational methods since the mid1980s has led to a growing literature on fully Bayesian analyses with models for categorical data, with main emphasis on general