Results 1  10
of
30
Unsupervised Models for Named Entity Classification
 In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora
, 1999
"... This paper discusses the use of unlabeled examples for the problem of named entity classification. A large number of rules is needed for coverage of the domain, suggesting that a fairly large number of labeled examples should be required to train a classifier. However, we show that the use of unlabe ..."
Abstract

Cited by 436 (3 self)
 Add to MetaCart
This paper discusses the use of unlabeled examples for the problem of named entity classification. A large number of rules is needed for coverage of the domain, suggesting that a fairly large number of labeled examples should be required to train a classifier. However, we show that the use of unlabeled data can reduce the requirements for supervision to just 7 simple “seed ” rules. The approach gains leverage from natural redundancy in the data: for many namedentity instances both the spelling of the name and the context in which it appears are sufficient to determine its type. We present two algorithms. The first method uses a similar algorithm to that of (Yarowsky 95), with modifications motivated by (Blum and Mitchell 98). The second algorithm extends ideas from boosting algorithms, designed for supervised learning tasks, to the framework suggested by (Blum and Mitchell 98). 1
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 Journal of Machine Learning Research
, 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract

Cited by 421 (20 self)
 Add to MetaCart
We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class is compared against all others, or in which all pairs of classes are compared to each other, or in which output codes with errorcorrecting properties are used. We propose a general method for combining the classifiers generated on the binary problems, and we prove a general empirical multiclass loss bound given the empirical loss of the individual binary learning algorithms. The scheme and the corresponding bounds apply to many popular classification learning algorithms including supportvector machines, AdaBoost, regression, logistic regression and decisiontree algorithms. We also give a multiclass generalization error analysis for general output codes with AdaBoost as the binary learner. Experimental results with SVM and AdaBoost show that our scheme provides a viable alternative to the most commonly used multiclass algorithms.
Discriminative Reranking for Natural Language Parsing
, 2005
"... This article considers approaches which rerank the output of an existing probabilistic parser. The base parser produces a set of candidate parses for each input sentence, with associated probabilities that define an initial ranking of these parses. A second model then attempts to improve upon this i ..."
Abstract

Cited by 271 (9 self)
 Add to MetaCart
This article considers approaches which rerank the output of an existing probabilistic parser. The base parser produces a set of candidate parses for each input sentence, with associated probabilities that define an initial ranking of these parses. A second model then attempts to improve upon this initial ranking, using additional features of the tree as evidence. The strength of our approach is that it allows a tree to be represented as an arbitrary set of features, without concerns about how these features interact or overlap and without the need to define a derivation or a generative model which takes these features into account. We introduce a new method for the reranking task, based on the boosting approach to ranking problems described in Freund et al. (1998). We apply the boosting method to parsing the Wall Street Journal treebank. The method combined the loglikelihood under a baseline model (that of Collins [1999]) with evidence from an additional 500,000 features over parse trees that were not included in the original model. The new model achieved 89.75 % Fmeasure, a 13 % relative decrease in Fmeasure error over the baseline model’s score of 88.2%. The article also introduces a new algorithm for the boosting approach which takes advantage of the sparsity of the feature space in the parsing data. Experiments show significant efficiency gains for the new algorithm over the obvious implementation of the boosting approach. We argue that the method is an appealing alternative—in terms of both simplicity and efficiency—to work on feature selection methods within loglinear (maximumentropy) models. Although the experiments in this article are on natural language parsing (NLP), the approach should be applicable to many other NLP problems which are naturally framed as ranking tasks, for example, speech recognition, machine translation, or natural language generation.
Logistic Regression, AdaBoost and Bregman Distances
, 2000
"... We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt al ..."
Abstract

Cited by 204 (43 self)
 Add to MetaCart
We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt algorithms designed for one problem to the other. For both problems, we give new algorithms and explain their potential advantages over existing methods. These algorithms can be divided into two types based on whether the parameters are iteratively updated sequentially (one at a time) or in parallel (all at once). We also describe a parameterized family of algorithms which interpolates smoothly between these two extremes. For all of the algorithms, we give convergence proofs using a general formalization of the auxiliaryfunction proof technique. As one of our sequentialupdate algorithms is equivalent to AdaBoost, this provides the first general proof of convergence for AdaBoost. We show that all of our algorithms generalize easily to the multiclass case, and we contrast the new algorithms with iterative scaling. We conclude with a few experimental results with synthetic data that highlight the behavior of the old and newly proposed algorithms in different settings.
An introduction to boosting and leveraging
 Advanced Lectures on Machine Learning, LNCS
, 2003
"... ..."
A Generalized Maximum Entropy Approach to Bregman Coclustering and Matrix Approximation
 In KDD
, 2004
"... Coclustering is a powerful data mining technique with varied applications such as text clustering, microarray analysis and recommender systems. Recently, an informationtheoretic coclustering approach applicable to empirical joint probability distributions was proposed. In many situations, coclust ..."
Abstract

Cited by 98 (24 self)
 Add to MetaCart
Coclustering is a powerful data mining technique with varied applications such as text clustering, microarray analysis and recommender systems. Recently, an informationtheoretic coclustering approach applicable to empirical joint probability distributions was proposed. In many situations, coclustering of more general matrices is desired. In this paper, we present a substantially generalized coclustering framework wherein any Bregman divergence can be used in the objective function, and various conditional expectation based constraints can be considered based on the statistics that need to be preserved. Analysis of the coclustering problem leads to the minimum Bregman information principle, which generalizes the maximum entropy principle, and yields an elegant meta algorithm that is guaranteed to achieve local optimality. Our methodology yields new algorithms and also encompasses several previously known clustering and coclustering algorithms based on alternate minimization.
Boosting and Maximum Likelihood for Exponential Models
 In Advances in Neural Information Processing Systems
, 2001
"... Recent research has considered the relationship between boosting and more standard statistical methods, such as logistic regression, concluding that AdaBoost is similar but somehow still very different from statistical methods in that it minimizes a different loss function. In this paper we derive a ..."
Abstract

Cited by 80 (6 self)
 Add to MetaCart
Recent research has considered the relationship between boosting and more standard statistical methods, such as logistic regression, concluding that AdaBoost is similar but somehow still very different from statistical methods in that it minimizes a different loss function. In this paper we derive an equivalence between AdaBoost and the dual of a convex optimization problem. In this setting, it is seen that the only difference between minimizing the exponential loss used by AdaBoost and maximum likelihood for exponential models is that the latter requires the model to be normalized to form a conditional probability distribution over labels; the two methods minimize the same KullbackLeibler divergence objective function subject to identical feature constraints. In addition to establishing a simple and easily understood connection between the two methods, this framework enables us to derive new regularization procedures for boosting that directly correspond to penalized maximum likelihood. Experiments on UCI datasets, comparing exponential loss and maximum likelihood for parallel and sequential update algorithms, confirm our theoretical analysis, indicating that AdaBoost and maximum likelihood typically yield identical results as the number of features increases to allow the models to fit the training data.
Game Theory, Maximum Entropy, Minimum Discrepancy And Robust Bayesian Decision Theory
 ANNALS OF STATISTICS
, 2004
"... ..."
Boosting as Entropy Projection
, 1999
"... We consider the AdaBoost procedure for boosting weak learners. In AdaBoost, a key step is choosing a new distribution on the training examples based on the old distribution and the mistakes made by the present weak hypothesis. We show how AdaBoost 's choice of the new distribution can be seen ..."
Abstract

Cited by 59 (8 self)
 Add to MetaCart
We consider the AdaBoost procedure for boosting weak learners. In AdaBoost, a key step is choosing a new distribution on the training examples based on the old distribution and the mistakes made by the present weak hypothesis. We show how AdaBoost 's choice of the new distribution can be seen as an approximate solution to the following problem: Find a new distribution that is closest to the old distribution subject to the constraint that the new distribution is orthogonal to the vector of mistakes of the current weak hypothesis. The distance (or divergence) between distributions is measured by the relative entropy. Alternatively, we could say that AdaBoost approximately projects the distribution vector onto a hyperplane dened by the mistake vector. We show that this new view of AdaBoost as an entropy projection is dual to the usual view of AdaBoost as minimizing the normalization factors of the updated distributions.
Parameter Estimation for Statistical Parsing Models: Theory and Practice of DistributionFree Methods
, 2001
"... A fundamental problem in statistical parsing is the choice of criteria and algorithms used to estimate the parameters in a model. The predominant approach in computational linguistics has been to use a parametric model with some variant of maximumlikelihood estimation. The assumptions under which m ..."
Abstract

Cited by 53 (10 self)
 Add to MetaCart
A fundamental problem in statistical parsing is the choice of criteria and algorithms used to estimate the parameters in a model. The predominant approach in computational linguistics has been to use a parametric model with some variant of maximumlikelihood estimation. The assumptions under which maximumlikelihood estimation is justified are arguably quite strong. This paper discusses the statistical theory underlying various parameterestimation methods, and gives algorithms which depend on alternatives to (smoothed) maximumlikelihood estimation. We first give an overview of results from statistical learning theory. We then show how important concepts from the classification literature  specifically, generalization results based on margins on training data  can be derived for parsing models. Finally, we describe parameter estimation algorithms which are motivated by these generalization bounds.