Results 1  10
of
52
An introduction to boosting and leveraging
 Advanced Lectures on Machine Learning, LNCS
, 2003
"... ..."
Interior methods for nonlinear optimization
 SIAM Review
, 2002
"... Abstract. Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their ..."
Abstract

Cited by 79 (4 self)
 Add to MetaCart
Abstract. Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for linear programming was not even contemplated because of the total dominance of the simplex method. Vague but continuing anxiety about barrier methods eventually led to their abandonment in favor of newly emerging, apparently more efficient alternatives such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods were almost without exception regarded as a closed chapter in the history of optimization. This picture changed dramatically with Karmarkar’s widely publicized announcement in 1984 of a fast polynomialtime interior method for linear programming; in 1985, a formal connection was established between his method and classical barrier methods. Since then, interior methods have advanced so far, so fast, that their influence has transformed both the theory and practice of constrained optimization. This article provides a condensed, selective look at classical material and recent research about interior methods for nonlinearly constrained optimization.
Implementation of interior point methods for large scale linear programming
 Interior point methods in mathematical programming
, 1996
"... ..."
ON PROJECTED NEWTON BARRIER METHODS FOR LINEAR PROGRAMMING AND AN EQUIVALENCE TO KARMARKAR'S PROJECTIVE METHOD
, 1986
"... Interest in linear programming has been intensified recently by Karmarkar's publication in 1984 of an algorithm that is claimed to be much faster than the simplex method for practical problems. We review classical barrierfunction methods for nonlinear programming based on applying a logarithmi ..."
Abstract

Cited by 68 (8 self)
 Add to MetaCart
Interest in linear programming has been intensified recently by Karmarkar's publication in 1984 of an algorithm that is claimed to be much faster than the simplex method for practical problems. We review classical barrierfunction methods for nonlinear programming based on applying a logarithmic transformation to inequality constraints. For the special case of linear programming, the transformed problem can be solved by a "projected Newton barrier" method. This method is shown to be equivalent to Karmarkar's projective method for a particular choice of the barrier parameter. We then present details of a specific barrier algorithm and its practical implementation. Numerical results are given for several nontrivial test problems, and the implications for future developments in linear programming are discussed.
Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces
, 2000
"... We examine methods for constructing regression ensembles based on a linear program (LP). The ensemble regression function consists of linear combina tions of base hypotheses generated by some boostingtype base learning algorithm. Unlike the classification case, for regression the set of possible h ..."
Abstract

Cited by 20 (9 self)
 Add to MetaCart
We examine methods for constructing regression ensembles based on a linear program (LP). The ensemble regression function consists of linear combina tions of base hypotheses generated by some boostingtype base learning algorithm. Unlike the classification case, for regression the set of possible hypotheses producible by the base learning algorithm may be infinite. We explicitly tackle the issue of how to define and solve ensemble regression when the hypothesis space is infinite. Our approach is based on a semiinfinite linear program that has an infinite number of constraints and a finite number of variables. We show that the regression problem is well posed for infinite hypothesis spaces in both the primal and dual spaces. Most importantly, we prove there exists an optimal solution to the infinite hypothesisspace problem consisting of a finite number of hypothesis. We propose two algorithms for solving the infinite and finite hypothesis problems. One uses a column generation simplextype algorithm and the other adopts an exponential barrier approach. Furthermore, we give sufficient conditions for the base learning algorithm and the hypothesis set to be used for infinite regression ensembles. Computational resultsshow that these methods are extremely promising.
Barrier Boosting
"... Boosting algorithms like AdaBoost and ArcGV are iterative strategies to minimize a constrained objective function, equivalent to Barrier algorithms. ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
Boosting algorithms like AdaBoost and ArcGV are iterative strategies to minimize a constrained objective function, equivalent to Barrier algorithms.
An Interior Point Potential Reduction Method for Constrained Equations
, 1995
"... We study the problem of solving a constrained system of nonlinear equations by a combination of the classical damped Newton method for (unconstrained) smooth equations and the recent interior point potential reduction methods for linear programs, linear and nonlinear complementarity problems. In gen ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
We study the problem of solving a constrained system of nonlinear equations by a combination of the classical damped Newton method for (unconstrained) smooth equations and the recent interior point potential reduction methods for linear programs, linear and nonlinear complementarity problems. In general, constrained equations provide a unified formulation for many mathematical programming problems, including complementarity problems of various kinds and the KarushKuhnTucker systems of variational inequalities and nonlinear programs. Combining ideas from the damped Newton and interior point methods, we present an iterative algorithm for solving a constrained system of equations and investigate its convergence properties. Specialization of the algorithm and its convergence analysis to complementarity problems of various kinds and the KarushKuhnTucker systems of variational inequalities are discussed in detail. We also report the computational results of the implementation of the algo...
Fast ℓ1minimization algorithms and an application in robust face recognition: a review
, 2010
"... We provide a comprehensive review of five representative ℓ1minimization methods, i.e., gradient projection, homotopy, iterative shrinkagethresholding, proximal gradient, and augmented Lagrange multiplier. The repository is intended to fill in a gap in the existing literature to systematically bench ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
We provide a comprehensive review of five representative ℓ1minimization methods, i.e., gradient projection, homotopy, iterative shrinkagethresholding, proximal gradient, and augmented Lagrange multiplier. The repository is intended to fill in a gap in the existing literature to systematically benchmark the performance of these algorithms using a consistent experimental setting. The experiment will be focused on the application of face recognition, where a sparse representation framework has recently been developed to recover human identities from facial images that may be affected by illumination change, occlusion, and facial disguise. The paper also provides useful guidelines to practitioners working in similar fields. 1.
A Note on Using Alternative SecondOrder Models for the Subproblems Arising in Barrier Function Methods for Minimization
, 1993
"... . Inequality constrained minimization problems are often solved by considering a sequence of parameterized barrier functions. Each barrier function is approximately minimized and the relevant parameters subsequently adjusted. It is common for the estimated solution to one barrier function problem to ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
. Inequality constrained minimization problems are often solved by considering a sequence of parameterized barrier functions. Each barrier function is approximately minimized and the relevant parameters subsequently adjusted. It is common for the estimated solution to one barrier function problem to be used as a starting estimate for the next. However, this has unfortunate repercussions for the standard Newtonlike methods applied to the barrier subproblem. In this note, we consider a class of alternative Newton methods which attempt to avoid such difficulties. Such schemes have already proved of use in the Harwell Subroutine Library quadratic programming codes VE14 and VE19. 1 IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598, USA Email : arconn@watson.ibm.com 2 CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse Cedex, France, EC Email : gould@cerfacs.fr or nimg@directory.rl.ac.uk 3 Department of Mathematics, Facult'es Universitaires ND de la Paix, 61, rue...