Results 1  10
of
260
Communication over fading channels with delay constraints
 IEEE Transactions on Information Theory
, 2002
"... We consider a user communicating over a fading channel with perfect channel state information. Data is assumed to arrive from some higher layer application and is stored in a buffer until it is transmitted. We study adapting the user's transmission rate and power based on the channel state info ..."
Abstract

Cited by 246 (7 self)
 Add to MetaCart
(Show Context)
We consider a user communicating over a fading channel with perfect channel state information. Data is assumed to arrive from some higher layer application and is stored in a buffer until it is transmitted. We study adapting the user's transmission rate and power based on the channel state information as well as the buffer occupancy; the objectives are to regulate both the longterm average transmission power and the average buffer delay incurred by the traffic. Two models for this situation are discussed; one corresponding to fixedlength/variablerate codewords and one corresponding to variablelength codewords. The tradeoff between the average delay and the average transmission power required for reliable communication is analyzed. A dynamic programming formulation is given to find all Pareto optimal power/delay operating points. We then quantify the behavior of this tradeoff in the regime of asymptotically large delay. In this regime we characterize simple buffer control policies which exhibit optimal characteristics. Connections to the delaylimited capacity and the expected capacity of fading channels are also discussed.
Gamal, “On the secrecy capacity of fading channels
 in Proc. IEEE Int. Symp. Information Theory (ISIT
"... We consider the secure transmission of information over an ergodic fading channel in the presence of an eavesdropper. Our eavesdropper can be viewed as the wireless counterpart of Wyner’s wiretapper. The secrecy capacity of such a system is characterized under the assumption of asymptotically long c ..."
Abstract

Cited by 203 (9 self)
 Add to MetaCart
(Show Context)
We consider the secure transmission of information over an ergodic fading channel in the presence of an eavesdropper. Our eavesdropper can be viewed as the wireless counterpart of Wyner’s wiretapper. The secrecy capacity of such a system is characterized under the assumption of asymptotically long coherence intervals. We first consider the full Channel State Information (CSI) case, where the transmitter has access to the channel gains of the legitimate receiver and the eavesdropper. The secrecy capacity under this full CSI assumption serves as an upper bound for the secrecy capacity when only the CSI of the legitimate receiver is known at the transmitter, which is characterized next. In each scenario, the perfect secrecy capacity is obtained along with the optimal power and rate allocation strategies. We then propose a lowcomplexity on/off power allocation strategy that achieves nearoptimal performance with only the main channel CSI. More specifically, this scheme is shown to be asymptotically optimal as the average SNR goes to infinity, and interestingly, is shown to attain the secrecy capacity under the full CSI assumption. Remarkably, our results reveal the positive impact of fading on the secrecy capacity and establish the critical role of rate adaptation, based on the main channel CSI, in facilitating secure communications over slow fading channels. 1
Degrees of freedom in adaptive modulation: a unified view
 IEEE Trans.. on Communications
, 2001
"... ..."
An overview of limited feedback in wireless communication systems
 IEEE J. SEL. AREAS COMMUN
, 2008
"... It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channe ..."
Abstract

Cited by 200 (41 self)
 Add to MetaCart
(Show Context)
It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channel knowledge at the transmitter. The transmitter in many systems (such as those using frequency division duplexing) can not leverage techniques such as training to obtain channel state information. Over the last few years, research has repeatedly shown that allowing the receiver to send a small number of information bits about the channel conditions to the transmitter can allow near optimal channel adaptation. These practical systems, which are commonly referred to as limited or finiterate feedback systems, supply benefits nearly identical to unrealizable perfect transmitter channel knowledge systems when they are judiciously designed. In this tutorial, we provide a broad look at the field of limited feedback wireless communications. We review work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, singleuser, and multiuser technology. We also provide a synopsis of the role of limited feedback in the standardization of next generation wireless systems.
Capacity and Optimal Resource Allocation for Fading Broadcast Channels: Part I: Ergodic Capacity
"... ..."
(Show Context)
Secure communication over fading channels
, 2007
"... The fading broadcast channel with confidential messages (BCC) is investigated, where a source node has common information for two receivers (receivers 1 and 2), and has confidential information intended only for receiver 1. The confidential information needs to be kept as secret as possible from rec ..."
Abstract

Cited by 188 (21 self)
 Add to MetaCart
(Show Context)
The fading broadcast channel with confidential messages (BCC) is investigated, where a source node has common information for two receivers (receivers 1 and 2), and has confidential information intended only for receiver 1. The confidential information needs to be kept as secret as possible from receiver 2. The broadcast channel from the source node to receivers 1 and 2 is corrupted by multiplicative fading gain coefficients in addition to additive Gaussian noise terms. The channel state information (CSI) is assumed to be known at both the transmitter and the receivers. The parallel BCC with independent subchannels is first studied, which serves as an informationtheoretic model for the fading BCC. The secrecy capacity region of the parallel BCC is established. This result is then specialized to give the secrecy capacity region of the parallel BCC with degraded subchannels. The secrecy capacity region is then established for the parallel Gaussian BCC, and the optimal source power allocations that achieve the boundary of the secrecy capacity region are derived. In particular, the secrecy capacity region is established for the basic Gaussian BCC. The secrecy capacity results are then
Optimum power allocation for parallel Gaussian channels with arbitrary input distributions
 IEEE TRANS. INF. THEORY
, 2006
"... The mutual information of independent parallel Gaussiannoise channels is maximized, under an average power constraint, by independent Gaussian inputs whose power is allocated according to the waterfilling policy. In practice, discrete signaling constellations with limited peaktoaverage ratios (m ..."
Abstract

Cited by 94 (10 self)
 Add to MetaCart
The mutual information of independent parallel Gaussiannoise channels is maximized, under an average power constraint, by independent Gaussian inputs whose power is allocated according to the waterfilling policy. In practice, discrete signaling constellations with limited peaktoaverage ratios (mPSK, mQAM, etc.) are used in lieu of the ideal Gaussian signals. This paper gives the power allocation policy that maximizes the mutual information over parallel channels with arbitrary input distributions. Such policy admits a graphical interpretation, referred to as mercury/waterfilling, which generalizes the waterfilling solution and allows retaining some of its intuition. The relationship between mutual information of Gaussian channels and nonlinear minimum meansquare error (MMSE) proves key to solving the power allocation problem.
Asymptotically Optimal WaterFilling in Vector MultipleAccess Channels
 IEEE Trans. Inform. Theory
, 2001
"... Dynamic resource allocation is an important means to increase the sum capacity of fading multipleaccess channels (MACs). In this paper, we consider vector multiaccess channels (channels where each user has multiple degrees of freedom) and study the effect of power allocation as a function of the ch ..."
Abstract

Cited by 80 (4 self)
 Add to MetaCart
Dynamic resource allocation is an important means to increase the sum capacity of fading multipleaccess channels (MACs). In this paper, we consider vector multiaccess channels (channels where each user has multiple degrees of freedom) and study the effect of power allocation as a function of the channel state on the sum capacity (or spectral efficiency) defined as the maximum sum of rates of users per unit degree of freedom at which the users can jointly transmit reliably, in an information theoretic sense, assuming random directions of received signal. Directsequence codedivision multipleaccess (DSCDMA) channels and MACs with multiple antennas at the receiver are two systems that fall under the purview of our model. Our main result is the identification of a simple dynamic powerallocation scheme that is optimal in a large system, i.e., with a large number of users and a correspondingly large number of degrees of freedom. A key feature of this policy is that, for any user, it depends on the instantaneous amplitude of channel state of that user alone and the structure of the policy is "waterfilling." In the context of DSCDMA and in the special case of no fading, the asymptotically optimal power policy of waterfilling simplifies to constant power allocation over all realizations of signature sequences; this result verifies the conjecture made in [28]. We study the behavior of the asymptotically optimal waterfilling policy in various regimes of number of users per unit degree of freedom and signaltonoise ratio (SNR). We also generalize this result to multiple classes, i.e., the situation when users in different classes have different average power constraints.
Qualityofservice driven power and rate adaptation over wireless links
 IEEE TRANS. WIRELESS COMMUN
, 2007
"... We propose a qualityofservice (QoS) driven power and rate adaptation scheme over wireless links in mobile wireless networks. Specifically, our proposed scheme aims at maximizing the system throughput subject to a given delay QoS constraint. First, we derive an optimal adaptation policy by integrat ..."
Abstract

Cited by 72 (14 self)
 Add to MetaCart
We propose a qualityofservice (QoS) driven power and rate adaptation scheme over wireless links in mobile wireless networks. Specifically, our proposed scheme aims at maximizing the system throughput subject to a given delay QoS constraint. First, we derive an optimal adaptation policy by integrating information theory with the concept of effective capacity for a block fading channel model. Our analyses reveal an important fact that there exists a fundamental tradeoff between throughput and QoS provisioning. In particular, when the QoS constraint becomes loose, the optimal powercontrol policy converges to the wellknown waterfilling scheme, where Shannon (ergodic) capacity can be achieved. On the other hand, when the QoS constraint gets stringent, the optimal policy converges to the total channel inversion scheme under which the system operates at a constant rate. Inspired by the above observations, we then consider a more practical scenario where variablepower adaptive modulation is employed over both block fading and Markov correlated fading channels. In both cases, we derive the associated power and rate adaptation policies. The obtained results suggest that the channel correlation has a significant impact on QoSdriven power and rate adaptations. The higher the correlation is, the faster the powercontrol policy converges to the total channel inversion when the QoS constraint becomes more stringent. Finally, we conduct simulations to verify that the adaptation policy proposed for Markov channel models can also be applied to the more general channel models.
Multipleantenna cooperative wireless systems: A diversity multiplexing tradeoff perspective
, 2007
"... We consider a general multipleantenna network with multiple sources, multiple destinations, and multiple relays in terms of the diversity–multiplexing tradeoff (DMT). We examine several subcases of this most general problem taking into account the processing capability of the relays (halfduplex o ..."
Abstract

Cited by 68 (3 self)
 Add to MetaCart
We consider a general multipleantenna network with multiple sources, multiple destinations, and multiple relays in terms of the diversity–multiplexing tradeoff (DMT). We examine several subcases of this most general problem taking into account the processing capability of the relays (halfduplex or fullduplex), and the network geometry (clustered or nonclustered). We first study the multipleantenna relay channel with a fullduplex relay to understand the effect of increased degrees of freedom in the direct link. We find DMT upper bounds and investigate the achievable performance of decodeandforward (DF), and compressandforward (CF) protocols. Our results suggest that while DF is DMT optimal when all terminals have one antenna each, it may not maintain its good performance when the degrees of freedom in the direct link are increased, whereas CF continues to perform optimally. We also study the multipleantenna relay channel with a halfduplex relay. We show that the halfduplex DMT behavior can significantly be different from the fullduplex case. We find that CF is DMT optimal for halfduplex relaying as well, and is the first protocol known to achieve the halfduplex relay DMT. We next study the multipleaccess relay channel (MARC) DMT. Finally, we investigate a system with a single source–destination pair and multiple relays, each node with a single antenna, and show that even under the ideal assumption of fullduplex relays and a clustered network, this virtual multipleinput multipleoutput (MIMO) system can never fully mimic a real MIMO DMT. For cooperative systems with multiple sources and multiple destinations the same limitation remains in effect.