Results 11  20
of
163
Setoids in Type Theory
, 2000
"... Formalising mathematics in dependent type theory often requires to use setoids, i.e. types with an explicit equality relation, as a representation of sets. This paper surveys some possible denitions of setoids and assesses their suitability as a basis for developing mathematics. In particular, we ..."
Abstract

Cited by 43 (3 self)
 Add to MetaCart
Formalising mathematics in dependent type theory often requires to use setoids, i.e. types with an explicit equality relation, as a representation of sets. This paper surveys some possible denitions of setoids and assesses their suitability as a basis for developing mathematics. In particular, we argue that a commonly advocated approach to partial setoids is unsuitable, and more generally that total setoids seem better suited for formalising mathematics. 1
The Barendregt Cube with Definitions and Generalised Reduction
, 1997
"... In this paper, we propose to extend the Barendregt Cube by generalising reduction and by adding definition mechanisms. We show that this extension satisfies all the original properties of the Cube including Church Rosser, Subject Reduction and Strong Normalisation. Keywords: Generalised Reduction, ..."
Abstract

Cited by 42 (20 self)
 Add to MetaCart
In this paper, we propose to extend the Barendregt Cube by generalising reduction and by adding definition mechanisms. We show that this extension satisfies all the original properties of the Cube including Church Rosser, Subject Reduction and Strong Normalisation. Keywords: Generalised Reduction, Definitions, Barendregt Cube, Church Rosser, Subject Reduction, Strong Normalisation. Contents 1 Introduction 3 1.1 Why generalised reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Why definition mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The item notation for definitions and generalised reduction . . . . . . . . . . 4 2 The item notation 7 3 The ordinary typing relation and its properties 10 3.1 The typing relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Properties of the ordinary typing relation . . . . . . . . . . . . . . . . . . . . 13 4 Generalising reduction in the Cube 15 4.1 The generalised...
Maude as a Formal MetaTool
 FM’99 — Formal Methods, World Congress on Formal Methods in the Development of Computing Systems
, 1999
"... Given the different perspectives from which a complex software system has to be analyzed, the multiplicity of formalisms is unavoidable. This poses two important technical challenges: how to rigorously meet the need to interrelate formalisms, and how to reduce the duplication of effort in tool a ..."
Abstract

Cited by 40 (14 self)
 Add to MetaCart
Given the different perspectives from which a complex software system has to be analyzed, the multiplicity of formalisms is unavoidable. This poses two important technical challenges: how to rigorously meet the need to interrelate formalisms, and how to reduce the duplication of effort in tool and specification building across formalisms. These challenges could be answered by adequate formal metatools that, when given the specification of a formal inference system, generate an efficient inference engine, and when given a specification of two formalisms and a translation, generate an actual translator between them. Similarly, module composition operations that are logicindependent, but that at present require costly implementation efforts for each formalism, could be provided for logics in general by module algebra generator metatools. The foundations of metatools of this kind can be based on a metatheory of general logics. Their actual design and implementation can be based on appropriate logical frameworks having efficient implementations. This paper explains how the reflective logical framework of rewriting logic can be used, in conjunction with an efficient reflective implementation such as the Maude language, to design formal metatools such as those described above. The feasibility of these ideas and techniques has been demonstrated by a number of substantial experiments in which new formal tools and new translations between formalisms, efficient enough to be used in practice, have been generated. 1
Constructions, Inductive Types and Strong Normalization
, 1993
"... This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic ..."
Abstract

Cited by 35 (3 self)
 Add to MetaCart
This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic notion of model, CCstructures, and use this to give a new strong normalization proof based on a modification of the realizability interpretation. An extension of the core calculus by inductive types is investigated and we show, using the example of infinite trees, how the realizability semantics and the strong normalization argument can be extended to nonalgebraic inductive types. We emphasize that our interpretation is sound for large eliminations, e.g. allows the definition of sets by recursion. Finally we apply the extended calculus to a nontrivial problem: the formalization of the strong normalization argument for Girard's System F. This formal proof has been developed and checked using the...
Faking It: Simulating Dependent Types in Haskell
, 2001
"... Dependent types reflect the fact that validity of data is often a relative notion by allowing prior data to affect the types of subsequent data. Not only does this make for a precise type system, but also a highly generic one: both the type and the program for each instance of a family of operations ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
Dependent types reflect the fact that validity of data is often a relative notion by allowing prior data to affect the types of subsequent data. Not only does this make for a precise type system, but also a highly generic one: both the type and the program for each instance of a family of operations can be computed from the data which codes for that instance. Recent experimental extensions to the Haskell type class mechanism give us strong tools to relativize types to other types. We may simulate some aspects of dependent typing by making counterfeit typelevel copies of data, with type constructors simulating data constructors and type classes simulating datatypes. This paper gives examples of the technique and discusses its potential. 1
A languagebased approach to functionally correct imperative programming
 IN PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING (ICFP05
, 2005
"... In this paper a languagebased approach to functionally correct imperative programming is proposed. The approach is based on a programming language called RSP1, which combines dependent types, general recursion, and imperative features in a typesafe way, while preserving decidability of type checki ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
In this paper a languagebased approach to functionally correct imperative programming is proposed. The approach is based on a programming language called RSP1, which combines dependent types, general recursion, and imperative features in a typesafe way, while preserving decidability of type checking. The methodology used is that of internal verification, where programs manipulate programmersupplied proofs explicitly as data. The fundamental technical idea of RSP1 is to identify problematic operations as impure, and keep them out of dependent types. The resulting language is powerful enough to verify statically nontrivial properties of imperative and functional programs. The paper presents the ideas through the examples of statically verified merge sort, statically verified imperative binary search trees, and statically verified directed acyclic graphs. This paper is an extended version of [30].
Extensional Equality in Intensional Type Theory
 In LICS 99
, 1999
"... We present a new approach to introducing an extensional propositional equality in Intensional Type Theory. Our construction is based on the observation that there is a sound, intensional setoid model in Intensional Type theory with a proofirrelevant universe of propositions and rules for  and t ..."
Abstract

Cited by 31 (14 self)
 Add to MetaCart
We present a new approach to introducing an extensional propositional equality in Intensional Type Theory. Our construction is based on the observation that there is a sound, intensional setoid model in Intensional Type theory with a proofirrelevant universe of propositions and rules for  and types. The Type Theory corresponding to this model is decidable, has no irreducible constants and permits large eliminations, which are essential for universes. Keywords. Type Theory, categorical models. 1. Introduction and Summary In Intensional Type Theory (see e.g. [11]) we differentiate between a decidable definitional equality (which we denote by =) and a propositional equality type (Id ( ; ) for any given type ) which requires proof. Typing only depends on definitional equality and hence is decidable. In Intensional Type Theory the type corresponding to the principle of extensionality Ext x2:(x) f;g2(x2:(x)) ( x2 Id (x) (f(x); g(x))) ! Id x2:(x) (f; g) is not...
The Impact of the Lambda Calculus in Logic and Computer Science
 BULLETIN OF SYMBOLIC LOGIC
, 1997
"... One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the represent ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.
Autarkic Computations in Formal Proofs
 J. Autom. Reasoning
, 1997
"... Formal proofs in mathematics and computer science are being studied because these objects can be verified by a very simple computer program. An important open problem is whether these formal proofs can be generated with an effort not much greater than writing a mathematical paper in, say, L A ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
Formal proofs in mathematics and computer science are being studied because these objects can be verified by a very simple computer program. An important open problem is whether these formal proofs can be generated with an effort not much greater than writing a mathematical paper in, say, L A T E X. Modern systems for proofdevelopment make the formalization of reasoning relatively easy. Formalizing computations such that the results can be used in formal proofs is not immediate. In this paper it is shown how to obtain formal proofs of statements like Prime(61) in the context of Peano arithmetic or (x + 1)(x + 1) = x 2 + 2x + 1 in the context of rings. It is hoped that the method will help bridge the gap between the efficient systems of computer algebra and the reliable systems of proofdevelopment. 1. The problem Usual mathematics is informal but precise. One speaks about informal rigor. Formal mathematics on the other hand consists of definitions, statements and proo...