Results 1 
9 of
9
Computing a glimpse of randomness
 Experimental Mathematics
"... A Chaitin Omega number is the halting probability of a universal Chaitin (selfdelimiting Turing) machine. Every Omega number is both computably enumerable (the limit of a computable, increasing, converging sequence of rationals) and random (its binary expansion is an algorithmic random sequence). In ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
A Chaitin Omega number is the halting probability of a universal Chaitin (selfdelimiting Turing) machine. Every Omega number is both computably enumerable (the limit of a computable, increasing, converging sequence of rationals) and random (its binary expansion is an algorithmic random sequence). In particular, every Omega number is strongly noncomputable. The aim of this paper is to describe a procedure, which combines Java programming and mathematical proofs, for computing the exact values of the first 63 bits of a Chaitin Omega: 000000100000010000100000100001110111001100100111100010010011100. Full description of programs and proofs will be given elsewhere. 1
Algorithmic randomness, quantum physics, and incompleteness
 Proceedings of the Conference “Machines, Computations and Universality” (MCU’2004), number 3354 in Lecture Notes in Computer Science
, 2006
"... When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is almost certainly wrong. Arthur C. Clarke ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is almost certainly wrong. Arthur C. Clarke
From Heisenberg to Gödel via Chaitin
, 2008
"... In 1927 Heisenberg discovered that the “more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa”. Four years later Gödel showed that a finitely specified, consistent formal system which is large enough to include arithmetic is incomplete. A ..."
Abstract

Cited by 11 (9 self)
 Add to MetaCart
In 1927 Heisenberg discovered that the “more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa”. Four years later Gödel showed that a finitely specified, consistent formal system which is large enough to include arithmetic is incomplete. As both results express some kind of impossibility it is natural to ask whether there is any relation between them, and, indeed, this question has been repeatedly asked for a long time. The main interest seems to have been in possible implications of incompleteness to physics. In this note we will take interest in the converse implication and will offer a positive answer to the question: Does uncertainty imply incompleteness? We will show that algorithmic randomness is equivalent to a “formal uncertainty principle ” which implies Chaitin’s informationtheoretic incompleteness. We also show that the derived uncertainty relation, for many computers, is physical. This fact supports the conjecture that uncertainty implies randomness not only in mathematics, but also in physics.
Simplicity via Provability for Universal Prefixfree Turing Machines
, 2008
"... Universality is one of the most important ideas in computability theory. There are various criteria of simplicity for universal Turing machines. Probably the most popular one is to count the number of states/symbols. This criterion is more complex than it may appear at a first glance. In this note w ..."
Abstract
 Add to MetaCart
Universality is one of the most important ideas in computability theory. There are various criteria of simplicity for universal Turing machines. Probably the most popular one is to count the number of states/symbols. This criterion is more complex than it may appear at a first glance. In this note we review recent results in Algorithmic Information Theory and propose three new criteria of simplicity for universal prefixfree Turing machines. These criteria refer to the possibility of proving various natural properties of such a machine (its universality, for example) in a formal theory, PA or ZFC. In all cases some, but not all, machines are simple.
IOS Press Proving as a Computable Procedure
, 2004
"... Abstract. Gödel’s incompleteness theorem states that every finitelypresented, consistent, sound theory which is strong enough to include arithmetic is incomplete. In this paper we present elementary proofs for three axiomatic variants of Gödel’s incompleteness theorem and we use them (a) to illustr ..."
Abstract
 Add to MetaCart
Abstract. Gödel’s incompleteness theorem states that every finitelypresented, consistent, sound theory which is strong enough to include arithmetic is incomplete. In this paper we present elementary proofs for three axiomatic variants of Gödel’s incompleteness theorem and we use them (a) to illustrate the idea that there is more than “complete vs. incomplete”, there are degrees of incompleteness, and (b) to discuss the implications of incompleteness and computerassisted proofs for Hilbert’s Programme. We argue that the impossibility of carrying out Hilbert’s Programme is a thesis and has a similar status to the ChurchTuring thesis. 1.
Incompleteness, Complexity, Randomness and Beyond
, 2001
"... The Library is composed of an... infinite number of hexagonal galleries... [it] includes all verbal structures, all variations permitted by the twentyfive orthographical symbols, but not a single example of absolute nonsense.... These phrases, at first glance incoherent, can no doubt be justified i ..."
Abstract
 Add to MetaCart
The Library is composed of an... infinite number of hexagonal galleries... [it] includes all verbal structures, all variations permitted by the twentyfive orthographical symbols, but not a single example of absolute nonsense.... These phrases, at first glance incoherent, can no doubt be justified in a cryptographical or allegorical manner; such a justification is verbal and, ex hypothesi, already figures in the Library.... The certitude that some shelf in some hexagon held precious books and that these precious books were inaccessible seemed almost intolerable. A blasphemous sect suggested that... all men should juggle letters and symbols until they constructed, by an improbable gift of chance, these canonical books... but the Library is... useless, incorruptible, secret. Jorge Luis Borges, “The Library of Babel” Gödel’s Incompleteness Theorems have the same scientific status as Einstein’s principle of relativity, Heisenberg’s uncertainty principle, and Watson and Crick’s double helix model of DNA. Our aim is to discuss some new faces of the incompleteness phenomenon unveiled by an informationtheoretic approach to randomness and recent developments in quantum computing.