Results 1  10
of
712
Determining Lyapunov Exponents from a Time Series
 Physica
, 1985
"... We present the first algorithms that allow the estimation of nonnegative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of n ..."
Abstract

Cited by 231 (1 self)
 Add to MetaCart
We present the first algorithms that allow the estimation of nonnegative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of nearby orbits in phase space. A system with one or more positive Lyapunov exponents is defined to be chaotic. Our method is rooted conceptually in a previously developed technique that could only be applied to analytically defined model systems: we monitor the longterm growth rate of small volume elements in an attractor. The method is tested on model systems with known Lyapunov spectra, and applied to data for the BelousovZhabotinskii reaction and CouetteTaylor flow. Contents 1.
SRB measures for partially hyperbolic systems whose central direction is mostly expanding
, 2000
"... We construct SinaiRuelleBowen (SRB) measures supported on partially hyperbolic sets of diffeomorphisms  the tangent bundle splits into two invariant subbundles, one of which is uniformly contracting  under the assumption that the complementary subbundle is nonuniformly expanding. If the r ..."
Abstract

Cited by 107 (27 self)
 Add to MetaCart
We construct SinaiRuelleBowen (SRB) measures supported on partially hyperbolic sets of diffeomorphisms  the tangent bundle splits into two invariant subbundles, one of which is uniformly contracting  under the assumption that the complementary subbundle is nonuniformly expanding. If the rate of expansion (Lyapunov exponents) is bounded away from zero, then there are only finitely many SRB measures. Our techniques extend to other situations, including certain maps with singularities or critical points, as well as diffeomorphisms having only a dominated splitting (and no uniformly hyperbolic subbundle). 1 Introduction The following approach has been most effective in studying the dynamics of complicated systems: one tries to describe the average time spent by typical orbits in different regions of the phase space. According to the ergodic theorem of Birkhoff, such times are well defined for almost all point, with respect to any invariant probability measure. However, the...
Chaos and Nonlinear Dynamics: Application to Financial Markets
 Journal of Finance
, 1991
"... After the stock market crash of October 19, 1987, interest in nonlinear dynamics, especially deterministic chaotic dynamics, has increased in both the financial press and the academic literature. This has come about because the frequency of large moves in stock markets is greater than would be expec ..."
Abstract

Cited by 106 (3 self)
 Add to MetaCart
After the stock market crash of October 19, 1987, interest in nonlinear dynamics, especially deterministic chaotic dynamics, has increased in both the financial press and the academic literature. This has come about because the frequency of large moves in stock markets is greater than would be expected
Advanced Spectral Methods for Climatic Time Series
, 2001
"... The analysis of uni or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical eld of ..."
Abstract

Cited by 96 (30 self)
 Add to MetaCart
The analysis of uni or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical eld of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory.
An Unsupervised Ensemble Learning Method for Nonlinear Dynamic StateSpace Models
 Neural Computation
, 2001
"... A Bayesian ensemble learning method is introduced for unsupervised extraction of dynamic processes from noisy data. The data are assumed to be generated by an unknown nonlinear mapping from unknown factors. The dynamics of the factors are modeled using a nonlinear statespace model. The nonlinear map ..."
Abstract

Cited by 87 (32 self)
 Add to MetaCart
A Bayesian ensemble learning method is introduced for unsupervised extraction of dynamic processes from noisy data. The data are assumed to be generated by an unknown nonlinear mapping from unknown factors. The dynamics of the factors are modeled using a nonlinear statespace model. The nonlinear mappings in the model are represented using multilayer perceptron networks. The proposed method is computationally demanding, but it allows the use of higher dimensional nonlinear latent variable models than other existing approaches. Experiments with chaotic data show that the new method is able to blindly estimate the factors and the dynamic process which have generated the data. It clearly outperforms currently available nonlinear prediction techniques in this very di#cult test problem.
Nonlinear Prediction of Chaotic Time Series Using Support Vector Machines
 IEEE Workshop on Neural Networks for Signal Processing VII
, 1997
"... A novel method for regression has been recently proposed by V. Vapnik et al. [8, 9]. The technique, called Support Vector Machine (SVM), is very well founded from the mathematical point of view and seems to provide a new insight in function approximation. We implemented the SVM and tested it on the ..."
Abstract

Cited by 87 (1 self)
 Add to MetaCart
A novel method for regression has been recently proposed by V. Vapnik et al. [8, 9]. The technique, called Support Vector Machine (SVM), is very well founded from the mathematical point of view and seems to provide a new insight in function approximation. We implemented the SVM and tested it on the same data base of chaotic time series that was used in [1] to compare the performances of different approximation techniques, including polynomial and rational approximation, local polynomial techniques, Radial Basis Functions, and Neural Networks. The SVM performs better than the approaches presented in [1]. We also study, for a particular time series, the variability in performance with respect to the few free parameters of SVM.
Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133
, 2005
"... Ensembles used for probabilistic weather forecasting often exhibit a spreaderror correlation, but they tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distr ..."
Abstract

Cited by 71 (28 self)
 Add to MetaCart
Ensembles used for probabilistic weather forecasting often exhibit a spreaderror correlation, but they tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distributions from different sources. The BMA predictive probability density function (PDF) of any quantity of interest is a weighted average of PDFs centered on the individual biascorrected forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts and reflect the models ’ relative contributions to predictive skill over the training period. The BMA weights can be used to assess the usefulness of ensemble members, and this can be used as a basis for selecting ensemble members; this can be useful given the cost of running large ensembles. The BMA PDF can be represented as an unweighted ensemble of any desired size, by simulating from the BMA predictive distribution. The BMA predictive variance can be decomposed into two components, one corresponding to the betweenforecast variability, and the second to the withinforecast variability. Predictive PDFs or intervals based solely on the ensemble spread incorporate the first component but not the second. Thus BMA provides a theoretical explanation of the tendency of ensembles to exhibit a spreaderror correlation but yet
A practical method for calculating largest Lyapunov exponents from small data sets
 PHYSICA D
, 1993
"... Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close statespace trajectories and estimate the amount of chaos in a system. We present a new m ..."
Abstract

Cited by 62 (0 self)
 Add to MetaCart
Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close statespace trajectories and estimate the amount of chaos in a system. We present a new method for calculating the largest Lyapunov exponent from an experimental time series. The method follows directly from the definition of the largest Lyapunov exponent and is accurate because it takes advantage of all the available data. We show that the algorithm is fast, easy to implement, and robust to changes in the following quantities: embedding dimension, size of data set, reconstruction delay, and noise level. Furthermore, one may use the algorithm to calculate simultaneously the correlation dimension. Thus, one sequence of computations will yield an estimate of both the level of chaos and the system complexity.
A Hybrid Ensemble Kalman Filter / 3DVariational Analysis Scheme
"... A hybrid 3dimensional variational (3DVar) / ensemble Kalman filter analysis scheme is demonstrated using a quasigeostrophic model under perfectmodel assumptions. Four networks with differing observational densities are tested, including one network with a data void. The hybrid scheme operates by ..."
Abstract

Cited by 60 (15 self)
 Add to MetaCart
A hybrid 3dimensional variational (3DVar) / ensemble Kalman filter analysis scheme is demonstrated using a quasigeostrophic model under perfectmodel assumptions. Four networks with differing observational densities are tested, including one network with a data void. The hybrid scheme operates by computing a set of parallel data assimilation cycles, with each member of the set receiving unique perturbed observations. The perturbed observations are generated by adding random noise consistent with observation error statistics to the control set of observations. Background error statistics for the data assimilation are estimated from a linear combination of timeinvariant 3DVar covariances and flowdependent covariances developed from the ensemble of shortrange forecasts. The hybrid scheme allows the user to weight the relative contributions of the 3DVar and ensemblebased background covariances. The analysis scheme was cycled for 90 days, with new observations assimilated every 12 h...
Using the Extended Kalman Filter with a Multilayer QuasiGeostrophic Ocean Model
 J. Geophys. Res
, 1992
"... this paper the extended Kalman filter is used with a nonlinear multilayer quasigeostrophic (QG) model. This provides us with both a realistic ocean model and a very sophisticated error statistics scheme. The extended Kalman filter is an extension of the common Kalman filter and may be used when the ..."
Abstract

Cited by 60 (16 self)
 Add to MetaCart
this paper the extended Kalman filter is used with a nonlinear multilayer quasigeostrophic (QG) model. This provides us with both a realistic ocean model and a very sophisticated error statistics scheme. The extended Kalman filter is an extension of the common Kalman filter and may be used when the model dynamics or the measurement equation is nonlinear. It consists of an approximative equation for the propagation of error covariances, and also approximative filter equations if the measurement equation is nonlinear. When changing from a linear system to nonlinear dynamics the possible existence of a wide variety of phenomena which are nonexistent in the linear theory is introduced. Nonlinear systems may have solutions with multiple equilibria, where the solutions sometimes abruptly undergo transitions from one equilibrium to another as parameters change (bifurcations). Also chaotic behavior occurs in many deterministic systems, where solutions exhibit an apparently random behavior. The Lorenz [1963] model is probably the best known example of chaotic systems. It has solutions which undergo "unpredictable" transitions between two different equilibria (chaos). As discussed by Miller and Ghil