Results 1  10
of
115
Compiling polymorphism using intensional type analysis
 In Symposium on Principles of Programming Languages
, 1995
"... The views and conclusions contained in this document are those of the authors and should not be interpreted as ..."
Abstract

Cited by 260 (18 self)
 Add to MetaCart
The views and conclusions contained in this document are those of the authors and should not be interpreted as
Compiling with Types
, 1995
"... Compilers for monomorphic languages, such as C and Pascal, take advantage of types to determine data representations, alignment, calling conventions, and register selection. However, these languages lack important features including polymorphism, abstract datatypes, and garbage collection. In contr ..."
Abstract

Cited by 102 (14 self)
 Add to MetaCart
Compilers for monomorphic languages, such as C and Pascal, take advantage of types to determine data representations, alignment, calling conventions, and register selection. However, these languages lack important features including polymorphism, abstract datatypes, and garbage collection. In contrast, modern programming languages such as Standard ML (SML), provide all of these features, but existing implementations fail to take full advantage of types. The result is that performance of SML code is quite bad when compared to C. In this thesis, I provide a general framework, called typedirected compilation, that allows compiler writers to take advantage of types at all stages in compilation. In the framework, types are used not only to determine efficient representations and calling conventions, but also to prove the correctness of the compiler. A key property of typedirected compilation is that all but the lowest levels of the compiler use typed intermediate languages. An advantage of this approach is that it provides a means for automatically checking the integrity of the resulting code. An important
Analyzing Proofs in Analysis
 LOGIC: FROM FOUNDATIONS TO APPLICATIONS. EUROPEAN LOGIC COLLOQUIUM (KEELE
, 1993
"... ..."
Partial realizations of Hilbert’s program
 Journal of Symbolic Logic
, 1988
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract

Cited by 38 (8 self)
 Add to MetaCart
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The
Mathematically Strong Subsystems of Analysis With Low Rate of Growth of Provably Recursive Functionals
, 1995
"... This paper is the first one in a sequel of papers resulting from the authors Habilitationsschrift [22] which are devoted to determine the growth in proofs of standard parts of analysis. A hierarchy (GnA # )n#I N of systems of arithmetic in all finite types is introduced whose definable objects of ..."
Abstract

Cited by 34 (21 self)
 Add to MetaCart
This paper is the first one in a sequel of papers resulting from the authors Habilitationsschrift [22] which are devoted to determine the growth in proofs of standard parts of analysis. A hierarchy (GnA # )n#I N of systems of arithmetic in all finite types is introduced whose definable objects of type 1 = 0(0) correspond to the Grzegorczyk hierarchy of primitive recursive functions. We establish the following extraction rule for an extension of GnA # by quantifierfree choice ACqf and analytical axioms # having the form #x # #y ## sx#z # F0 (including also a `non standard' axiom F  which does not hold in the full settheoretic model but in the strongly majorizable functionals): From a proof GnA # +ACqf + # # #u 1 , k 0 #v ## tuk#w 0 A0(u, k, v, w) one can extract a uniform bound # such that #u 1 , k 0 #v ## tuk#w # #ukA0 (u, k, v, w) holds in the full settheoretic type structure. In case n = 2 (resp. n = 3) #uk is a polynomial (resp. an elementary recursive function) in k, u M := #x. max(u0, . . . , ux). In the present paper we show that for n # 2, GnA # +ACqf+F  proves a generalization of the binary Knig's lemma yielding new conservation results since the conclusion of the above rule can be verified in G max(3,n) A # in this case. In a subsequent paper we will show that many important ine#ective analytical principles and theorems can be proved already in G2A # +ACqf+# for suitable #. 1
General logical metatheorems for functional analysis
, 2008
"... In this paper we prove general logical metatheorems which state that for large classes of theorems and proofs in (nonlinear) functional analysis it is possible to extract from the proofs effective bounds which depend only on very sparse local bounds on certain parameters. This means that the bounds ..."
Abstract

Cited by 31 (18 self)
 Add to MetaCart
In this paper we prove general logical metatheorems which state that for large classes of theorems and proofs in (nonlinear) functional analysis it is possible to extract from the proofs effective bounds which depend only on very sparse local bounds on certain parameters. This means that the bounds are uniform for all parameters meeting these weak local boundedness conditions. The results vastly generalize related theorems due to the second author where the global boundedness of the underlying metric space (resp. a convex subset of a normed space) was assumed. Our results treat general classes of spaces such as metric, hyperbolic, CAT(0), normed, uniformly convex and inner product spaces and classes of functions such as nonexpansive, HölderLipschitz, uniformly continuous, bounded and weakly quasinonexpansive ones. We give several applications in the area of metric fixed point theory. In particular, we show that the uniformities observed in a number of recently found effective bounds (by proof theoretic analysis) can be seen as instances of our general logical results.
Local stability of ergodic averages
 Transactions of the American Mathematical Society
"... We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesguemeasure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages An ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesguemeasure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages Anf do not converge to a computable element of L2([0,1]). In particular, there is no computable bound on the rate of convergence for that sequence. On the other hand, we show that, for any nonexpansive linear operator T on a separable Hilbert space, and any element f, it is possible to compute a bound on the rate of convergence of (Anf) from T, f, and the norm ‖f ∗ ‖ of the limit. In particular, if T is the Koopman operator arising from a computable ergodic measure preserving transformation of a probability space X and f is any computable element of L2(X), then there is a computable bound on the rate of convergence of the sequence (Anf). The mean ergodic theorem is equivalent to the assertion that for every function K(n) and every ε> 0, there is an n with the property that the ergodic averages Amf are stable to within ε on the interval [n, K(n)]. Even in situations where the sequence (Anf) does not have a computable limit, one can give explicit bounds on such n in terms of K and ‖f‖/ε. This tells us how far one has to search to find an n so that the ergodic averages are “locally stable ” on a large interval. We use these bounds to obtain a similarly explicit version of the pointwise ergodic theorem, and show that our bounds are qualitatively different from ones that can be obtained using upcrossing inequalities due to Bishop and Ivanov. Finally, we explain how our positive results can be viewed as an application of a body of general prooftheoretic methods falling under the heading of “proof mining.” 1
Propositional computability logic I
 ACM Transactions on Computational Logic
"... Computability logic (CL) is a systematic formal theory of computational tasks and resources, which, in a sense, can be seen as a semanticsbased alternative to (the syntactically introduced) linear logic. With its expressive and flexible language, where formulas represent computational problems and ..."
Abstract

Cited by 24 (18 self)
 Add to MetaCart
Computability logic (CL) is a systematic formal theory of computational tasks and resources, which, in a sense, can be seen as a semanticsbased alternative to (the syntactically introduced) linear logic. With its expressive and flexible language, where formulas represent computational problems and “truth ” is understood as algorithmic solvability, CL potentially offers a comprehensive logical basis for constructive applied theories and computing systems inherently requiring constructive and computationally meaningful underlying logics. Among the best known constructivistic logics is Heyting’s intuitionistic calculus INT, whose language can be seen as a special fragment of that of CL. The constructivistic philosophy of INT, however, just like the resource philosophy of linear logic, has never really found an intuitively convincing and mathematically strict semantical justification. CL has good claims to provide such a justification and hence a materialization of Kolmogorov’s known thesis “INT = logic of problems”. The present paper contains a soundness proof for INT with respect to the CL semantics. It is expected to constitute part 1 of a twopiece series on the intuitionistic fragment of CL, with part 2 containing an anticipated completeness proof. 1
Correspondence between Operational and Denotational Semantics
 Handbook of Logic in Computer Science
, 1995
"... This course introduces the operational and denotational semantics of PCF and examines the relationship between the two. Topics: Syntax and operational semantics of PCF, Activity Lemma, undefinability of parallel or; Context Lemma (first principles proof) and proof by logical relations Denotational ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
This course introduces the operational and denotational semantics of PCF and examines the relationship between the two. Topics: Syntax and operational semantics of PCF, Activity Lemma, undefinability of parallel or; Context Lemma (first principles proof) and proof by logical relations Denotational semantics of PCF induced by an interpretation; (standard) Scott model, adequacy, weak adequacy and its proof (by a computability predicate) Domain Theory up to SFP and Scott domains; non full abstraction of the standard model, definability of compact elements and full abstraction for PCFP (PCF + parallel or), properties of orderextensional (continuous) models of PCF, Milner's model and Mulmuley's construction (excluding proofs) Additional topics (time permitting): results on pure simplytyped lambda calculus, Friedman 's Completeness Theorem, minimal model, logical relations and definability, undecidability of lambda definability (excluding proof), dIdomains and stable functions Homepa...