Results 1  10
of
17
Initial Algebra and Final Coalgebra Semantics for Concurrency
, 1994
"... The aim of this paper is to relate initial algebra semantics and final coalgebra semantics. It is shown how these two approaches to the semantics of programming languages are each others dual, and some conditions are given under which they coincide. More precisely, it is shown how to derive initial ..."
Abstract

Cited by 55 (9 self)
 Add to MetaCart
The aim of this paper is to relate initial algebra semantics and final coalgebra semantics. It is shown how these two approaches to the semantics of programming languages are each others dual, and some conditions are given under which they coincide. More precisely, it is shown how to derive initial semantics from final semantics, using the initiality and finality to ensure their equality. Moreover, many facts about congruences (on algebras) and (generalized) bisimulations (on coalgebras) are shown to be dual as well.
On the Foundations of Final Semantics: NonStandard Sets, Metric Spaces, Partial Orders
 PROCEEDINGS OF THE REX WORKSHOP ON SEMANTICS: FOUNDATIONS AND APPLICATIONS, VOLUME 666 OF LECTURE NOTES IN COMPUTER SCIENCE
, 1998
"... Canonical solutions of domain equations are shown to be final coalgebras, not only in a category of nonstandard sets (as already known), but also in categories of metric spaces and partial orders. Coalgebras are simple categorical structures generalizing the notion of postfixed point. They are ..."
Abstract

Cited by 47 (10 self)
 Add to MetaCart
Canonical solutions of domain equations are shown to be final coalgebras, not only in a category of nonstandard sets (as already known), but also in categories of metric spaces and partial orders. Coalgebras are simple categorical structures generalizing the notion of postfixed point. They are also used here for giving a new comprehensive presentation of the (still) nonstandard theory of nonwellfounded sets (as nonstandard sets are usually called). This paper is meant to provide a basis to a more general project aiming at a full exploitation of the finality of the domains in the semantics of programming languages  concurrent ones among them. Such a final semantics enjoys uniformity and generality. For instance, semantic observational equivalences like bisimulation can be derived as instances of a single `coalgebraic' definition (introduced elsewhere), which is parametric of the functor appearing in the domain equation. Some properties of this general form of equivalence are also studied in this paper.
Continuation Semantics for Prolog with Cut
, 1989
"... We present a denotational continuation semantics for Prolog with cut. First a uniform language B is studied, which captures the control flow aspects of Prolog. The denotational semantics for B is proven equivalent to a transition system based operational semantics. The congruence proof relies on the ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
We present a denotational continuation semantics for Prolog with cut. First a uniform language B is studied, which captures the control flow aspects of Prolog. The denotational semantics for B is proven equivalent to a transition system based operational semantics. The congruence proof relies on the representation of the operational semantics as a chain of approximations and on a convenient induction principle. Finally, we interpret the abstract language B such that we obtain equivalent denotational and operational models for Prolog itself. Section 1 Introduction In the nice textbook of Lloyd [Ll] the cut, available in all Prologsystems, is described as a controversial control facility. The cut, added to the Horn clause logic for efficiency reasons, affects the completeness of the refutation procedure. Therefore the standard declarative semantics using Herbrand models does not adequately capture the computational aspects of the Prologlanguage. In the present paper we study the Prolog...
Domain Equations for Probabilistic Processes
 MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE
, 1997
"... In this paper we consider Milner's calculus CCS enriched by a probabilistic choice operator. The calculus is given operational semantics based on probabilistic transition systems. We define operational notions of preorder and equivalence as probabilistic extensions of the simulation preorder an ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
In this paper we consider Milner's calculus CCS enriched by a probabilistic choice operator. The calculus is given operational semantics based on probabilistic transition systems. We define operational notions of preorder and equivalence as probabilistic extensions of the simulation preorder and the bisimulation equivalence respectively. We extend existing categorytheoretic techniques for solving domain equations to the probabilistic case and give two denotational semantics for the calculus. The first, "smooth", semantic model arises as a solution of a domain equation involving the probabilistic powerdomain and solved in the category CONT? of continuous domains. The second model also involves appropriately restricted probabilistic powerdomain, but is constructed in the category C UM of complete ultrametric spaces, and hence is necessarily "discrete". We show that the domaintheoretic semantics is fully abstract with respect to the simulation preorder, and that the metric semantics is ...
A Coalgebraic Foundation for Linear Time Semantics
 In Category Theory and Computer Science
, 1999
"... We present a coalgebraic approach to trace equivalence semantics based on lifting behaviour endofunctors for deterministic action to Kleisli categories of monads for nondeterministic choice. In Set , this gives a category with ordinary transition systems as objects and with morphisms characterised ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
We present a coalgebraic approach to trace equivalence semantics based on lifting behaviour endofunctors for deterministic action to Kleisli categories of monads for nondeterministic choice. In Set , this gives a category with ordinary transition systems as objects and with morphisms characterised in terms of a linear notion of bisimulation. The final object in this category is the canonical abstract model for trace equivalence and can be obtained by extending the final coalgebra of the deterministic action behaviour to the Kleisli category of the nonempty powerset monad. The corresponding final coalgebra semantics is fully abstract with respect to trace equivalence.
Domain Equations for Probabilistic Processes (Extended Abstract)
 IN PROC. EXPRESS'97. ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE 7
, 1997
"... In this paper we consider Milner's calculus CCS enriched by a probabilistic choice operator. The calculus is given operational semantics based on probabilistic transition systems. We define operational notions of preorder and equivalence as probabilistic extensions of the simulation preorder a ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
In this paper we consider Milner's calculus CCS enriched by a probabilistic choice operator. The calculus is given operational semantics based on probabilistic transition systems. We define operational notions of preorder and equivalence as probabilistic extensions of the simulation preorder and the bisimulation equivalence respectively. We extend existing categorytheoretic techniques for solving domain equations to the probabilistic case and give two denotational semantics for the calculus. The first, "smooth", semantic model arises as a solution of a domain equation involving the probabilistic powerdomain and solved in the category CONT? of continuous domains. The second model also involves appropriately restricted probabilistic powerdomain, but is constructed i...
Categorical Modelling of Structural Operational Rules  Case Studies
, 1997
"... . This paper aims at substantiating a recently introduced categorical theory of `wellbehaved' operational semantics. A variety of concrete examples of structural operational rules is modelled categorically illustrating the versatility and modularity of the theory. Further, a novel functorial n ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
. This paper aims at substantiating a recently introduced categorical theory of `wellbehaved' operational semantics. A variety of concrete examples of structural operational rules is modelled categorically illustrating the versatility and modularity of the theory. Further, a novel functorial notion of guardedness is introduced which allows for a general and formal treatment of guarded recursive programs. Introduction The predominant approach to operational semantics is Plotkin's SOS [13], which is based on structural rules. One finds in the literature various formats of structural rules which guarantee a good behaviour such as having adequate denotational models and behavioural equivalence (eg bisimulation) being a congruence. In [17], it is shown that the rules in the best known of these formats, namely GSOS [5], are in 11 correspondence with natural transformations of a suitable type, depending on specific functorial notions of syntax and behaviour. This led to studying abstract ...
Formal program development with approximations
 Proc. ZB 2005: Formal Specification and Development in B, volume 3455 of LNCS
, 2005
"... Abstract. We describe a method for combining formal program development with a disciplined and documented way of introducing realistic compromises, for example necessitated by resource bounds. Idealistic specifications are identified with the limits of sequences of more “realistic” specifications, a ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
Abstract. We describe a method for combining formal program development with a disciplined and documented way of introducing realistic compromises, for example necessitated by resource bounds. Idealistic specifications are identified with the limits of sequences of more “realistic” specifications, and such sequences can then be refined in their entirety. Compromises amount to focusing the attention on a particular element of the sequence instead of the sequence as a whole. This method addresses the problem that initial formal specifications can be abstract or complete but rarely both. Various potential application areas are sketched, some illustrated with examples. Key research issues are found in identifying metric spaces and properties that make them usable for refinement using approximations.
Topological Models for Higher Order Control Flow
 PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL FOUNDATIONS OF PROGRAMMING SEMANTICS, VOLUME 802 OF LECTURE NOTES IN COMPUTER SCIENCE
, 1993
"... Semantic models are presented for two simple imperative languages with higher order constructs. In the first language the interesting notion is that of second order assignment x := s, for x a procedure variable and s a statement. The second language extends this idea by a form of higher order commun ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
Semantic models are presented for two simple imperative languages with higher order constructs. In the first language the interesting notion is that of second order assignment x := s, for x a procedure variable and s a statement. The second language extends this idea by a form of higher order communication, with statements c ! s and c ? x, for c a channel. We develop operational and denotational models for both languages, and study their relationships. Both in the definitions and the comparisons of the semantic models, convenient use is made of some tools from (metric) topology. The operational models are based on (SOSstyle) transition systems; the denotational definitions use domains specified as solutions of domain equations in a category of 1bounded complete ultrametric spaces. In establishing the connection between the two kinds of models, fruitful use is made of Rutten's processes as terms technique. Another new tool consists in the use of metric transition systems, with a metric defined on the configurations of the system. In addition to higher order programming notions, we use higher order definitional techniques, e.g., in defining the semantic mappings as fixed points of (contractive) higher order operators. By Banach's theorem, such fixed points are unique, yielding another important proof principle for our paper.
Three Metric Domains of Processes for Bisimulation
 in Proceedings of the 9th International Conference on Mathematical Foundations of Programming Semantics, LNCS
, 1993
"... A new metric domain of processes is presented. This domain is located in between two metric process domains introduced by De Bakker and Zucker. The new process domain characterizes the collection of image finite processes. This domain has as advantages over the other process domains that no complica ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
A new metric domain of processes is presented. This domain is located in between two metric process domains introduced by De Bakker and Zucker. The new process domain characterizes the collection of image finite processes. This domain has as advantages over the other process domains that no complications arise in the definitions of operators like sequential composition and parallel composition, and that image finite language constructions like random assignment can be modelled in an elementary way. As in the other domains, bisimilarity and equality coincide in this domain. The three domains are obtained as unique (up to isometry) solutions of equations in a category of 1bounded complete metric spaces. In the case the action set is finite, the three domains are shown to be equal (up to isometry). For infinite action sets, e.g., equipollent to the set of natural or real numbers, the process domains are proved not to be isometric. AMS Subject Classification (1991): 68Q55 CR Subject Classification (1991): D.3.1, F.3.2 Keywords & Phrases: process, complete metric space, bisimulation, finitely branching, image finite, sequential composition Note: This work was partially supported by the Netherlands Nationale Faciliteit Informatica programme, project Research and Education in Concurrent Systems (REX). This paper will appear in Proceedings of the Ninth Conference on the Mathematical Foundations of Programming Semantics, New Orleans, LA, USA, April 710, 1993.