Results 1  10
of
68
A family of algorithms for approximate Bayesian inference
, 2001
"... One of the major obstacles to using Bayesian methods for pattern recognition has been its computational expense. This thesis presents an approximation technique that can perform Bayesian inference faster and more accurately than previously possible. This method, "Expectation Propagation," ..."
Abstract

Cited by 370 (11 self)
 Add to MetaCart
One of the major obstacles to using Bayesian methods for pattern recognition has been its computational expense. This thesis presents an approximation technique that can perform Bayesian inference faster and more accurately than previously possible. This method, "Expectation Propagation," unifies and generalizes two previous techniques: assumeddensity filtering, an extension of the Kalman filter, and loopy belief propagation, an extension of belief propagation in Bayesian networks. The unification shows how both of these algorithms can be viewed as approximating the true posterior distribution with a simpler distribution, which is close in the sense of KLdivergence. Expectation Propagation exploits the best of both algorithms: the generality of assumeddensity filtering and the accuracy of loopy belief propagation. Loopy belief propagation, because it propagates exact belief states, is useful for limited types of belief networks, such as purely discrete networks. Expectation Propagati...
Dealing with label switching in mixture models
 Journal of the Royal Statistical Society, Series B
, 2000
"... In a Bayesian analysis of finite mixture models, parameter estimation and clustering are sometimes less straightforward that might be expected. In particular, the common practice of estimating parameters by their posterior mean, and summarising joint posterior distributions by marginal distributions ..."
Abstract

Cited by 194 (0 self)
 Add to MetaCart
(Show Context)
In a Bayesian analysis of finite mixture models, parameter estimation and clustering are sometimes less straightforward that might be expected. In particular, the common practice of estimating parameters by their posterior mean, and summarising joint posterior distributions by marginal distributions, often leads to nonsensical answers. This is due to the socalled “labelswitching” problem, which is caused by symmetry in the likelihood of the model parameters. A frequent response to this problem is to remove the symmetry using artificial identifiability constraints. We demonstrate that this fails in general to solve the problem, and describe an alternative class of approaches, relabelling algorithms, which arise from attempting to minimise the posterior expected loss under a class of loss functions. We describe in detail one particularly simple and general relabelling algorithm, and illustrate its success in dealing with the labelswitching problem on two examples.
Computational and Inferential Difficulties With Mixture Posterior Distributions
 Journal of the American Statistical Association
, 1999
"... This paper deals with both exploration and interpretation problems related to posterior distributions for mixture models. The specification of mixture posterior distributions means that the presence of k! modes is known immediately. Standard Markov chain Monte Carlo techniques usually have difficult ..."
Abstract

Cited by 167 (14 self)
 Add to MetaCart
(Show Context)
This paper deals with both exploration and interpretation problems related to posterior distributions for mixture models. The specification of mixture posterior distributions means that the presence of k! modes is known immediately. Standard Markov chain Monte Carlo techniques usually have difficulties with wellseparated modes such as occur here; the Markov chain Monte Carlo sampler stays within a neighbourhood of a local mode and fails to visit other equally important modes. We show that exploration of these modes can be imposed on the Markov chain Monte Carlo sampler using tempered transitions based on Langevin algorithms. However, as the prior distribution does not distinguish between the different components, the posterior mixture distribution is symmetric and thus standard estimators such as posterior means cannot be used. Since this is also true for most nonsymmetric priors, we propose alternatives for Bayesian inference for permutation invariant posteriors, including a cluster...
Sequential Monte Carlo Methods for Multiple Target Tracking and Data Fusion
 IEEE Trans. on Signal Processing
, 2002
"... Abstract—The classical particle filter deals with the estimation of one state process conditioned on a realization of one observation process. We extend it here to the estimation of multiple state processes given realizations of several kinds of observation processes. The new algorithm is used to tr ..."
Abstract

Cited by 119 (5 self)
 Add to MetaCart
(Show Context)
Abstract—The classical particle filter deals with the estimation of one state process conditioned on a realization of one observation process. We extend it here to the estimation of multiple state processes given realizations of several kinds of observation processes. The new algorithm is used to track with success multiple targets in a bearingsonly context, whereas a JPDAF diverges. Making use of the ability of the particle filter to mix different types of observations, we then investigate how to join passive and active measurements for improved tracking. Index Terms—Bayesian estimation, bearingsonly tracking, Gibbs sampler, multiple receivers, multiple targets tracking,
Bayesian Analysis of Mixture Models with an Unknown Number of Components  an alternative to reversible jump methods
, 1998
"... Richardson and Green (1997) present a method of performing a Bayesian analysis of data from a finite mixture distribution with an unknown number of components. Their method is a Markov Chain Monte Carlo (MCMC) approach, which makes use of the "reversible jump" methodology described by Gree ..."
Abstract

Cited by 114 (0 self)
 Add to MetaCart
Richardson and Green (1997) present a method of performing a Bayesian analysis of data from a finite mixture distribution with an unknown number of components. Their method is a Markov Chain Monte Carlo (MCMC) approach, which makes use of the "reversible jump" methodology described by Green (1995). We describe an alternative MCMC method which views the parameters of the model as a (marked) point process, extending methods suggested by Ripley (1977) to create a Markov birthdeath process with an appropriate stationary distribution. Our method is easy to implement, even in the case of data in more than one dimension, and we illustrate it on both univariate and bivariate data. Keywords: Bayesian analysis, Birthdeath process, Markov process, MCMC, Mixture model, Model Choice, Reversible Jump, Spatial point process 1 Introduction Finite mixture models are typically used to model data where each observation is assumed to have arisen from one of k groups, each group being suitably modelle...
Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modelling
 Statistical Science
"... Abstract. In the past ten years there has been a dramatic increase of interest in the Bayesian analysis of finite mixture models. This is primarily because of the emergence of Markov chain Monte Carlo (MCMC) methods. While MCMC provides a convenient way to draw inference from complicated statistical ..."
Abstract

Cited by 113 (5 self)
 Add to MetaCart
Abstract. In the past ten years there has been a dramatic increase of interest in the Bayesian analysis of finite mixture models. This is primarily because of the emergence of Markov chain Monte Carlo (MCMC) methods. While MCMC provides a convenient way to draw inference from complicated statistical models, there are many, perhaps underappreciated, problems associated with the MCMC analysis of mixtures. The problems are mainly caused by the nonidentifiability of the components under symmetric priors, which leads to socalled label switching in the MCMC output. This means that ergodic averages of component specific quantities will be identical and thus useless for inference. We review the solutions to the label switching problem, such as artificial identifiability constraints, relabelling algorithms and label invariant loss functions. We also review various MCMC sampling schemes that have been suggested for mixture models and discuss posterior sensitivity to prior specification.
Tracking Multiple Objects with Particle Filtering
, 2000
"... We address the problem of multitarget tracking encountered in many situations in signal or image processing. We consider stochastic dynamic systems detected by observation processes. The difficulty lies on the fact that the estimation of the states requires the assignment of the observations to the ..."
Abstract

Cited by 100 (4 self)
 Add to MetaCart
We address the problem of multitarget tracking encountered in many situations in signal or image processing. We consider stochastic dynamic systems detected by observation processes. The difficulty lies on the fact that the estimation of the states requires the assignment of the observations to the multiple targets. We propose an extension of the classical particle filter where the stochastic vector of assignment is estimated by a Gibbs sampler. This algorithm is used to estimate the trajectories of multiple targets from their noisy bearings, thus showing its ability to solve the data association problem. Moreover this algorithm is easily extended to multireceiver observations where the receivers can produce measurements of various nature with different frequencies.
Estimating mixtures of regressions
"... In this paper, we show how Bayesian inference for switching regression models and their generalisations can be achieved by the specification of loss functions which overcome the label switching problem common to all mixture models. We also derive an extension to models where the number of components ..."
Abstract

Cited by 55 (2 self)
 Add to MetaCart
In this paper, we show how Bayesian inference for switching regression models and their generalisations can be achieved by the specification of loss functions which overcome the label switching problem common to all mixture models. We also derive an extension to models where the number of components in the mixture is unknown, based on the birthand death technique developed in Stephens (2000a). The methods are illustrated on various real datasets.
A Particle Filter to Track Multiple Objects
 in Proceedings IEEE Workshop on MultiObject Tracking, 2001
, 2001
"... We address the problem of tracking multiple objects encountered in many situations in signal or image processing. We consider stochastic dynamic systems nonlinearly and uncompletely observed. The difficulty lies on the fact that the estimation of the states requires the assignation of the observatio ..."
Abstract

Cited by 31 (0 self)
 Add to MetaCart
(Show Context)
We address the problem of tracking multiple objects encountered in many situations in signal or image processing. We consider stochastic dynamic systems nonlinearly and uncompletely observed. The difficulty lies on the fact that the estimation of the states requires the assignation of the observations to the multiple targets. We propose an extension of the classical particle filter where the stochastic vector of assignation is estimated by a Gibbs sampler. The merit of the method is assessed in bearingsonly context and we present one application in imagebased tracking. 1.