Results 1 
3 of
3
Approximable concepts, Chu spaces, and information systems
"... This paper serves to bring three independent but important areas of computer science to a common meeting point: Formal Concept Analysis (FCA), Chu Spaces, and Domain Theory (DT). Each area is given a perspective or reformulation that is conducive to the flow of ideas and to the exploration of cros ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
This paper serves to bring three independent but important areas of computer science to a common meeting point: Formal Concept Analysis (FCA), Chu Spaces, and Domain Theory (DT). Each area is given a perspective or reformulation that is conducive to the flow of ideas and to the exploration of crossdisciplinary connections. Among other results, we show that the notion of state in Scott’s information system corresponds precisely to that of formal concepts in FCA with respect to all finite Chu spaces, and the entailment relation corresponds to “association rules”. We introduce, moreover, the notion of approximable concept and show that approximable concepts represent algebraic lattices which are identical to Scott domains except the inclusion of a top element. This notion serves as a stepping stone in the recent work [Hitzler and Zhang, 2004] in which a new notion of morphism on formal contexts results in a category equivalent to (a) the category of complete algebraic lattices and Scott continuous functions, and (b) a category of information systems and approximable mappings.
A cartesian closed category of approximable concept structures
 Proceedings of the International Conference On Conceptual Structures
, 2004
"... Abstract. Infinite contexts and their corresponding lattices are of theoretical and practical interest since they may offer connections with and insights from other mathematical structures which are normally not restricted to the finite cases. In this paper we establish a systematic connection betwe ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Infinite contexts and their corresponding lattices are of theoretical and practical interest since they may offer connections with and insights from other mathematical structures which are normally not restricted to the finite cases. In this paper we establish a systematic connection between formal concept analysis and domain theory as a categorical equivalence, enriching the link between the two areas as outlined in [25]. Building on a new notion of approximable concept introduced by Zhang and Shen [26], this paper provides an appropriate notion of morphisms on formal contexts and shows that the resulting category is equivalent to (a) the category of complete algebraic lattices and Scott continuous functions, and (b) a category of information systems and approximable mappings. Since the latter categories are cartesian closed, we obtain a cartesian closed category of formal contexts that respects both the context structures as well as the intrinsic notion of approximable concepts at the same time. 1
Bifinite Chu spaces
"... ABSTRACT. This paper studies colimits of sequences of finite Chu spaces and their ramifications. We consider three base categories of Chu spaces: the generic Chu spaces (C), the extensional Chu spaces (E), and the biextensional Chu spaces (B). The main results are: (1) a characterization of monics i ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
ABSTRACT. This paper studies colimits of sequences of finite Chu spaces and their ramifications. We consider three base categories of Chu spaces: the generic Chu spaces (C), the extensional Chu spaces (E), and the biextensional Chu spaces (B). The main results are: (1) a characterization of monics in each of the three categories; (2) existence (or the lack thereof) of colimits and a characterization of finite objects in each of the corresponding categories using monomorphisms/injections (denoted as iC, iE, and iB, respectively); (3) a formulation of bifinite Chu spaces with respect to iC; (4) the existence