Results 1  10
of
24
A New Approach to Abstract Syntax Involving Binders
 In 14th Annual Symposium on Logic in Computer Science
, 1999
"... Syntax Involving Binders Murdoch Gabbay Cambridge University DPMMS Cambridge CB2 1SB, UK M.J.Gabbay@cantab.com Andrew Pitts Cambridge University Computer Laboratory Cambridge CB2 3QG, UK ap@cl.cam.ac.uk Abstract The FraenkelMostowski permutation model of set theory with atoms (FMsets) ..."
Abstract

Cited by 174 (19 self)
 Add to MetaCart
(Show Context)
Syntax Involving Binders Murdoch Gabbay Cambridge University DPMMS Cambridge CB2 1SB, UK M.J.Gabbay@cantab.com Andrew Pitts Cambridge University Computer Laboratory Cambridge CB2 3QG, UK ap@cl.cam.ac.uk Abstract The FraenkelMostowski permutation model of set theory with atoms (FMsets) can serve as the semantic basis of metalogics for specifying and reasoning about formal systems involving name binding, ffconversion, capture avoiding substitution, and so on. We show that in FMset theory one can express statements quantifying over `fresh' names and we use this to give a novel settheoretic interpretation of name abstraction. Inductively defined FMsets involving this nameabstraction set former (together with cartesian product and disjoint union) can correctly encode objectlevel syntax modulo ffconversion. In this way, the standard theory of algebraic data types can be extended to encompass signatures involving binding operators. In particular, there is an associated n...
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 48 (19 self)
 Add to MetaCart
(Show Context)
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
Domain theory for concurrency
, 2003
"... Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey. ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey.
Models for NamePassing Processes: Interleaving and Causal
 In Proceedings of LICS 2000: the 15th IEEE Symposium on Logic in Computer Science (Santa Barbara
, 2000
"... We study syntaxfree models for namepassing processes. For interleaving semantics, we identify the indexing structure required of an early labelled transition system to support the usual picalculus operations, defining Indexed Labelled Transition Systems. For noninterleaving causal semantics we de ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
(Show Context)
We study syntaxfree models for namepassing processes. For interleaving semantics, we identify the indexing structure required of an early labelled transition system to support the usual picalculus operations, defining Indexed Labelled Transition Systems. For noninterleaving causal semantics we define Indexed Labelled Asynchronous Transition Systems, smoothly generalizing both our interleaving model and the standard Asynchronous Transition Systems model for CCSlike calculi. In each case we relate a denotational semantics to an operational view, for bisimulation and causal bisimulation respectively. We establish completeness properties of, and adjunctions between, categories of the two models. Alternative indexing structures and possible applications are also discussed. These are first steps towards a uniform understanding of the semantics and operations of namepassing calculi.
A congruence rule format for namepassing process calculi from mathematical structural operational semantics
 In Proc. LICS’06
, 2006
"... We introduce a GSOSlike rule format for namepassing process calculi. Specifications in this format correspond to theories in nominal logic. The intended models of such specifications arise by initiality from a general categorical model theory. For operational semantics given in this rule format, a ..."
Abstract

Cited by 25 (5 self)
 Add to MetaCart
(Show Context)
We introduce a GSOSlike rule format for namepassing process calculi. Specifications in this format correspond to theories in nominal logic. The intended models of such specifications arise by initiality from a general categorical model theory. For operational semantics given in this rule format, a natural behavioural equivalence — a form of open bisimilarity — is a congruence.
Presheaf Models for the piCalculus
, 1997
"... Recent work has shown that presheaf categories provide a general model of concurrency, with an inbuilt notion of bisimulation based on open maps. Here it is shown how this approach can also handle systems where the language of actions may change dynamically as a process evolves. The example is the p ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
Recent work has shown that presheaf categories provide a general model of concurrency, with an inbuilt notion of bisimulation based on open maps. Here it is shown how this approach can also handle systems where the language of actions may change dynamically as a process evolves. The example is the picalculus, a calculus for `mobile processes' whose communication topology varies as channels are created and discarded. A denotational semantics is described for the picalculus within an indexed category of profunctors; the model is fully abstract for bisimilarity, in the sense that bisimulation in the model, obtained from open maps, coincides with the usual bisimulation obtained from the operational semantics of the picalculus. While attention is concentrated on the `late' semantics of the picalculus, it is indicated how the `early' and other variants can also be captured.
Consistency of the Theory of Contexts
, 2001
"... The Theory of Contexts is a typetheoretic axiomatization which has been recently proposed by some of the authors for giving a metalogical account of the fundamental notions of variable and context as they appear in Higher Order Abstract Syntax. In this paper, we prove that this theory is consistent ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
The Theory of Contexts is a typetheoretic axiomatization which has been recently proposed by some of the authors for giving a metalogical account of the fundamental notions of variable and context as they appear in Higher Order Abstract Syntax. In this paper, we prove that this theory is consistent by building a model based on functor categories. By means of a suitable notion of forcing, we prove that this model validates Classical Higher Order Logic, the Theory of Contexts, and also (parametrised) structural induction and recursion principles over contexts. The approach we present in full detail should be useful also for reasoning on other models based on functor categories. Moreover, the construction could be adopted, and possibly generalized, also for validating other theories of names and binders. Contents 1 The object language 4 2 The metalanguage (Framework System #) 6 2.1 Syntax 6 2.2 Typing and logical judgements 7 2.3 Adequacy of the encoding 8 2.4 Remarks on the design of # 9 3 Categorytheoretic preliminaries 11 4.1 The ambient categories 4.2 Interpreting types 16 4.3 Interpreting environments 18 4.4 Interpreting the typing judgement of terms 19 4.5 Interpreting logical judgements 21 is a model of # 22 5.1 Forcing 22 5.2 Characterisation of Leibniz equality 23 models logical axioms and rules 26 models the Theory of Contexts 27 6 Recursion 28 6.1 Firstorder recursion 28 6.2 Higherorder recursion 31 7 Induction 33 7.1 Firstorder induction 34 7.2 Higherorder induction 37 8 Connections with tripos theory 38 9 Related work 41 9.1 Semantics based on functor categories 41 9.2 Logics for nominal calculi 44 10 Conclusions 45 A Proofs 46 A.1 Proof of Proposition 4.2 46 A.2 Proof of Proposition 4.3 47 A.3 Proof of Theorem 5.1 48 A.4 Proof of...
A unifying model of variables and names
 Foundations of Software Science and Computational Structures, vol. 3441, Lect. Notes in Comp. Sci
, 2005
"... Abstract. We investigate a category theoretic model where both “variables” and “names”, usually viewed as separate notions, are particular cases of the more general notion of distinction. The key aspect of this model is to consider functors over the category of irreflexive, symmetric finite relation ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
(Show Context)
Abstract. We investigate a category theoretic model where both “variables” and “names”, usually viewed as separate notions, are particular cases of the more general notion of distinction. The key aspect of this model is to consider functors over the category of irreflexive, symmetric finite relations. The models previously proposed for the notions of “variables ” and “names ” embed faithfully in the new one, and initial algebra/final coalgebra constructions can be transferred from the formers to the latter. Moreover, the new model admits a definition of distinctionaware simultaneous substitutions. As a substantial application example, we give the first semantic interpretation of MillerTiu’s FOλ ∇ logic. 1
Modal Logics are Coalgebraic
, 2008
"... Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large vari ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
(Show Context)
Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pickandchoose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors ’ firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility.
A game semantics of the asynchronous πcalculus
 In Proceedings of 16th CONCUR
, 2005
"... Abstract. This paper studies the denotational semantics of the typed asynchronous πcalculus. We describe a simple game semantics of this language, placing it within a rich hierarchy of games models for programming languages, A key element of our account is the identification of suitable categorical ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
(Show Context)
Abstract. This paper studies the denotational semantics of the typed asynchronous πcalculus. We describe a simple game semantics of this language, placing it within a rich hierarchy of games models for programming languages, A key element of our account is the identification of suitable categorical structures for describing the interpretation of types and terms at an abstract level. It is based on the notion of closed Freyd category, establishing a connection between our semantics, and that of the λcalculus. This structure is also used to define a trace operator, with which name binding is interpreted. We then show that our categorical characterization is sufficient to prove a weak soundness result. Another theme of the paper is the correspondence between justified sequences, on which our model is based, and traces in a labelled transition system in which only bound names are passed. We show that the denotations of processes are equivalent, via this correspondence, to their sets of traces. These results are used to show that the games model is fully abstract with respect to mayequivalence. 1