Results 1 
3 of
3
On Observational Equivalence and Algebraic Specification
, 1987
"... The properties of a simple and natural notion of observational equivalence of algebras and the corresponding specificationbuilding operation are studied. We begin with a defmition of observational equivalence which is adequate to handle reachable algebras only, and show how to extend it to cope wit ..."
Abstract

Cited by 66 (17 self)
 Add to MetaCart
The properties of a simple and natural notion of observational equivalence of algebras and the corresponding specificationbuilding operation are studied. We begin with a defmition of observational equivalence which is adequate to handle reachable algebras only, and show how to extend it to cope with unreachable algebras and also how it may be generalised to make sense under an arbitrary institution. Behavioural equivalence is treated as an important special case of observational equivalence, and its central role in program development is shown by means of an example.
Equational reasoning with subtypes
 Iowa State University
, 2002
"... Abstract. Using equational logic as a specification language, we investigate the proof theory of behavioral subtyping for objectoriented abstract data types with immutable objects and deterministic methods that can use multiple dispatch. In particular, we investigate a proof technique for correct b ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. Using equational logic as a specification language, we investigate the proof theory of behavioral subtyping for objectoriented abstract data types with immutable objects and deterministic methods that can use multiple dispatch. In particular, we investigate a proof technique for correct behavioral subtyping in which each subtypeâ€™s specification includes terms that can be used to coerce its objects to objects of each of its supertypes. We show that this technique is sound, using our previous work on the model theory of such abstract data types. We also give an example to show that the technique is not complete, even if the methods do not use multiple dispatch, and even if types specified are termgenerated. In preparation for the results on equational subtyping we develop the proof theory of a richer form of equational logic that is suitable for dealing with subtyping and behavioral equivalence. This gives some insight into question of when our proof techniques can be make effectively computable, but in general behavioral consequence is not effectively computable. 1.
Automatic Deduction of the Behavioral Equivalence between Two Algebraic Specifications
, 1995
"... We shall demonstrate that proving the behavioral equivalence of two algebraic specifications is equivalent to proving a set of theorems in a given initial algebra. Thus, it is possible to prove automatically this behavioral equivalence by use of automatic deduction techniques. ..."
Abstract
 Add to MetaCart
We shall demonstrate that proving the behavioral equivalence of two algebraic specifications is equivalent to proving a set of theorems in a given initial algebra. Thus, it is possible to prove automatically this behavioral equivalence by use of automatic deduction techniques.