Results 1 
1 of
1
Reasoning about Temporal Relations: A Maximal Tractable Subclass of Allen's Interval Algebra
 Journal of the ACM
, 1995
"... We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient ..."
Abstract

Cited by 160 (9 self)
 Add to MetaCart
We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient for deciding satisfiability. Further, using an extensive machinegenerated case analysis, we show that the ORDHorn subclass is a maximal tractable subclass of the full algebra (assuming<F NaN> P6=NP). In fact, it is the unique greatest tractable subclass amongst the subclasses that contain all basic relations. This work has been supported by the German Ministry for Research and Technology (BMFT) under grant ITW 8901 8 as part of the WIP project and under grant ITW 9201 as part of the TACOS project. 1 1 Introduction Temporal information is often conveyed qualitatively by specifying the relative positions of time intervals such as ". . . point to the figure while explaining the performance of the system . . . "...