Results 1 
9 of
9
Computational universes
 Chaos, Solitons & Fractals
, 2006
"... Suspicions that the world might be some sort of a machine or algorithm existing “in the mind ” of some symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms of this idea never reached mainstream. Modern developments in physics and computer science h ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
(Show Context)
Suspicions that the world might be some sort of a machine or algorithm existing “in the mind ” of some symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms of this idea never reached mainstream. Modern developments in physics and computer science have lent support to the thesis, but empirical evidence is needed before it can begin to replace our contemporary world view.
Quantum algorithmic information theory
 Journal of Universal Computer Science
, 1996
"... ..."
(Show Context)
On the calculating power of Laplace’s demon (Part I)
, 2006
"... We discuss several ways of making precise the informal concept of physical determinism, drawing on ideas from mathematical logic and computability theory. We outline a programme of investigating these notions of determinism in detail for specific, precisely articulated physical theories. We make a s ..."
Abstract
 Add to MetaCart
(Show Context)
We discuss several ways of making precise the informal concept of physical determinism, drawing on ideas from mathematical logic and computability theory. We outline a programme of investigating these notions of determinism in detail for specific, precisely articulated physical theories. We make a start on our programme by proposing a general logical framework for describing physical theories, and analysing several possible formulations of a simple Newtonian theory from the point of view of determinism. Our emphasis throughout is on clarifying the precise physical and metaphysical assumptions that typically underlie a claim that some physical theory is ‘deterministic’. A sequel paper is planned, in which we shall apply similar methods to the analysis of other physical theories. Along the way, we discuss some possible repercussions of this kind of investigation for both physics and logic. 1
Quantum algorithmic information theory
, 2008
"... The agenda of quantum algorithmic information theory, ordered ‘topdown, ’ is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits ..."
Abstract
 Add to MetaCart
(Show Context)
The agenda of quantum algorithmic information theory, ordered ‘topdown, ’ is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a twoport interferometer capable of arbitrary U(2) transformations. Basic to all these considerations is quantum theory, in particular Hilbert space quantum mechanics.
Physics and metaphysics look at computation Contents
"... As far as algorithmic thinking is bound by symbolic paperandpencil operations, the ChurchTuring thesis appears ..."
Abstract
 Add to MetaCart
As far as algorithmic thinking is bound by symbolic paperandpencil operations, the ChurchTuring thesis appears
Physical unknowables
, 2008
"... Different types of physical unknowables are discussed. Provable unknowables are derived from reduction to problems which are known to be recursively unsolvable. Recent series solutions to the nbody problem and related to it, chaotic systems, may have no computable radius of convergence. Quantum unk ..."
Abstract
 Add to MetaCart
Different types of physical unknowables are discussed. Provable unknowables are derived from reduction to problems which are known to be recursively unsolvable. Recent series solutions to the nbody problem and related to it, chaotic systems, may have no computable radius of convergence. Quantum unknowables include the random occurrence of single events, complementarity and value indefiniteness.
SPECIAL SECTIONASSESSMENT OF SCHEMES FOR EARTHQUAKE PREDICTION Are earthquakes predictable?
"... The answer to the above question depends on the definition of earthquake prediction. We discuss several definitions and possible classifications of earthquake prediction methods. We also consider various measures of prediction efficiency, review several recent examples of earthquake prediction, and ..."
Abstract
 Add to MetaCart
(Show Context)
The answer to the above question depends on the definition of earthquake prediction. We discuss several definitions and possible classifications of earthquake prediction methods. We also consider various measures of prediction efficiency, review several recent examples of earthquake prediction, and describe the methods that can be used to verify prediction schemes. We conclude that an empirical search for earthquake precursors that forecast the size of an impending earthquake has been fruitless. Despite considerable effort in several countries, no statistically rigorous validation of proposed precursory phenomena is available; therefore, reported cases of precursors can be explained by random noise or by chance coincidence. We present evidence that earthquakes are nonlinear, chaotic, scaleinvariant phenomena. The most probable consequence of earthquake selfsimilarity is a lack of earthquake predictability as popularly defined, that is a forecast of a specific individual earthquake. Many small earthquakes occur throughout any seismic zone, demonstrating that the critical conditions for earthquake nucleation are satisfied almost everywhere. Apparently, any small shock can grow into a large event. Thus, it is likely that an earthquake has no