Results 1  10
of
27
On Linear Layouts of Graphs
, 2004
"... In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A kstack (resp... ..."
Abstract

Cited by 30 (18 self)
 Add to MetaCart
In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A kstack (resp...
Stack And Queue Layouts Of Directed Acyclic Graphs: Part I
, 1996
"... . Stack layouts and queue layouts of undirected graphs have been used to model problems in fault tolerant computing and in parallel process scheduling. However, problems in parallel process scheduling are more accurately modeled by stack and queue layouts of directed acyclic graphs (dags). A stack ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
. Stack layouts and queue layouts of undirected graphs have been used to model problems in fault tolerant computing and in parallel process scheduling. However, problems in parallel process scheduling are more accurately modeled by stack and queue layouts of directed acyclic graphs (dags). A stack layout of a dag is similar to a stack layout of an undirected graph, with the additional requirement that the nodes of the dag be in some topological order. A queue layout is defined in an analogous manner. The stacknumber (queuenumber) of a dag is the smallest number of stacks (queues) required for its stack layout (queue layout). In this paper, bounds are established on the stacknumber and queuenumber of two classes of dags: tree dags and unicyclic dags. In particular, any tree dag can be laid out in 1 stack and in at most 2 queues; and any unicyclic dag can be laid out in at most 2 stacks and in at most 2 queues. Forbidden subgraph characterizations of 1queue tree dags and 1queue cycle d...
Stack And Queue Layouts Of Posets
 SIAM J. Discrete Math
, 1995
"... . The stacknumber (queuenumber) of a poset is defined as the stacknumber (queuenumber) of its Hasse diagram viewed as a directed acyclic graph. Upper bounds on the queuenumber of a poset are derived in terms of its jumpnumber, its length, its width, and the queuenumber of its covering graph. A lower ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
. The stacknumber (queuenumber) of a poset is defined as the stacknumber (queuenumber) of its Hasse diagram viewed as a directed acyclic graph. Upper bounds on the queuenumber of a poset are derived in terms of its jumpnumber, its length, its width, and the queuenumber of its covering graph. A lower bound of \Omega\Gamma p n) is shown for the queuenumber of the class of nelement planar posets. The queuenumber of a planar poset is shown to be within a small constant factor of its width. The stacknumber of nelement posets with planar covering graphs is shown to be \Theta(n). These results exhibit sharp differences between the stacknumber and queuenumber of posets as well as between the stacknumber (queuenumber) of a poset and the stacknumber (queuenumber) of its covering graph. Key words. poset, queue layout, stack layout, book embedding, Hasse diagram, jumpnumber AMS subject classifications. 05C99, 68R10, 94C15 1. Introduction. Stack and queue layouts of undirected graphs appear ...
ThreeDimensional Grid Drawings with SubQuadratic Volume
, 1999
"... A threedimensional grid drawing of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight linesegments representing the edges are pairwise noncrossing. A O(n volume bound is proved for threedimensional grid drawings of graphs with bounded ..."
Abstract

Cited by 18 (12 self)
 Add to MetaCart
A threedimensional grid drawing of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight linesegments representing the edges are pairwise noncrossing. A O(n volume bound is proved for threedimensional grid drawings of graphs with bounded degree, graphs with bounded genus, and graphs with no bounded complete graph as a minor. The previous best bound for these graph families was O(n ). These results (partially) solve open problems due to Pach, Thiele, and Toth (1997) and Felsner, Liotta, and Wismath (2001).
Treepartitions of ktrees with applications in graph layout
 Proc. 29th Workshop on Graph Theoretic Concepts in Computer Science (WG’03
, 2002
"... Abstract. A treepartition of a graph is a partition of its vertices into ‘bags ’ such that contracting each bag into a single vertex gives a forest. It is proved that every ktree has a treepartition such that each bag induces a (k − 1)tree, amongst other properties. Applications of this result t ..."
Abstract

Cited by 15 (11 self)
 Add to MetaCart
Abstract. A treepartition of a graph is a partition of its vertices into ‘bags ’ such that contracting each bag into a single vertex gives a forest. It is proved that every ktree has a treepartition such that each bag induces a (k − 1)tree, amongst other properties. Applications of this result to two wellstudied models of graph layout are presented. First it is proved that graphs of bounded treewidth have bounded queuenumber, thus resolving an open problem due to Ganley and Heath [2001] and disproving a conjecture of Pemmaraju [1992]. This result provides renewed hope for the positive resolution of a number of open problems regarding queue layouts. In a related result, it is proved that graphs of bounded treewidth have threedimensional straightline grid drawings with linear volume, which represents the largest known class of graphs with such drawings. 1
Queue layouts, treewidth, and threedimensional graph drawing
 Proc. 22nd Foundations of Software Technology and Theoretical Computer Science (FST TCS '02
, 2002
"... Abstract. A threedimensional (straightline grid) drawing of a graph represents the vertices by points in Z 3 and the edges by noncrossing line segments. This research is motivated by the following open problem due to Felsner, Liotta, and Wismath [Graph Drawing ’01, Lecture Notes in Comput. Sci., ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
Abstract. A threedimensional (straightline grid) drawing of a graph represents the vertices by points in Z 3 and the edges by noncrossing line segments. This research is motivated by the following open problem due to Felsner, Liotta, and Wismath [Graph Drawing ’01, Lecture Notes in Comput. Sci., 2002]: does every nvertex planar graph have a threedimensional drawing with O(n) volume? We prove that this question is almost equivalent to an existing onedimensional graph layout problem. A queue layout consists of a linear order σ of the vertices of a graph, and a partition of the edges into queues, such that no two edges in the same queue are nested with respect to σ. The minimum number of queues in a queue layout of a graph is its queuenumber. Let G be an nvertex member of a proper minorclosed family of graphs (such as a planar graph). We prove that G has a O(1) × O(1) × O(n) drawing if and only if G has O(1) queuenumber. Thus the above question is almost equivalent to an open problem of Heath, Leighton, and Rosenberg [SIAM J. Discrete Math., 1992], who ask whether every planar graph has O(1) queuenumber? We also present partial solutions to an open problem of Ganley and Heath [Discrete Appl. Math., 2001], who ask whether graphs of bounded treewidth have bounded queuenumber? We prove that graphs with bounded pathwidth, or both bounded treewidth and bounded maximum degree, have bounded queuenumber. As a corollary we obtain threedimensional drawings with optimal O(n) volume, for seriesparallel graphs, and graphs with both bounded treewidth and bounded maximum degree. 1
Scheduling TreeDags Using FIFO Queues: A Controlmemory Tradeoff
"... We study here a combinatorial problem that is motivated by a genre of architectureindependent scheduler for parallel computations. Such schedulers are often used, for instance, when computations are being done by a cooperating network of workstations. The results we obtain expose a controlmemory t ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
We study here a combinatorial problem that is motivated by a genre of architectureindependent scheduler for parallel computations. Such schedulers are often used, for instance, when computations are being done by a cooperating network of workstations. The results we obtain expose a controlmemory tradeoff for such schedulers, when the computation being scheduled has the structure of a complete binary tree. The combinatorial problem takes the following form. Consider, for each integer N =2 n, a family of n algorithms for linearizing the Nleaf complete binary tree in such away that each nonleaf node precedes its children. For each k 2f1 � 2�:::�ng, the kth algorithm in the family employs k FIFO queues to e ect the linearization, in a manner specified later (cf., [1], [5] [7]). In this paper, we expose a tradeoff between the number of queues used by eachofthen algorithms  which we view as measuring the control complexity of the algorithm  and the memory requirements of the algorithms, as embodied in the required capacity ofthe largestcapacity queue. Specifically, we prove that, for each k 2f1 � 2�:::�ng, the maximum perqueue capacity, call it Q k(N), for a kqueue algorithm that linearizes an Nleaf complete binary tree satisfies e
Stack and Queue Layouts of Halin Graphs
 UNPUBLISHED
, 1995
"... A Halin graph the union of a tree with no degree2 vertices and a cycle on the leaves of the tree. This paper examines the problem of laying out Halin graphs using stacks and queues. A kstack (kqueue) layout of a graph consists of a linear ordering of the vertices along with an assignment of each ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
A Halin graph the union of a tree with no degree2 vertices and a cycle on the leaves of the tree. This paper examines the problem of laying out Halin graphs using stacks and queues. A kstack (kqueue) layout of a graph consists of a linear ordering of the vertices along with an assignment of each edge to one of k stacks (queues). The ordering and the edge assignments must be made such that if the ordering is traversed from left to right, then each edge can be placed in its assigned stack (queue) when its left endpoint is encountered and removed from its assigned stack (queue) when its right endpoint is encountered. In this paper