Results 1 
8 of
8
On Linear Layouts of Graphs
, 2004
"... In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A kstack (resp... ..."
Abstract

Cited by 31 (19 self)
 Add to MetaCart
In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A kstack (resp...
Layout of Graphs with Bounded TreeWidth
 2002, submitted. Stacks, Queues and Tracks: Layouts of Graph Subdivisions 41
, 2004
"... A queue layout of a graph consists of a total order of the vertices, and a partition of the edges into queues, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph is its queuenumber. A threedimensional (straight line grid) drawing of a gr ..."
Abstract

Cited by 26 (20 self)
 Add to MetaCart
A queue layout of a graph consists of a total order of the vertices, and a partition of the edges into queues, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph is its queuenumber. A threedimensional (straight line grid) drawing of a graph represents the vertices by points in Z and the edges by noncrossing linesegments. This paper contributes three main results: (1) It is proved that the minimum volume of a certain type of threedimensional drawing of a graph G is closely related to the queuenumber of G. In particular, if G is an nvertex member of a proper minorclosed family of graphs (such as a planar graph), then G has a O(1) O(1) O(n) drawing if and only if G has O(1) queuenumber.
ThreeDimensional Grid Drawings with SubQuadratic Volume
, 1999
"... A threedimensional grid drawing of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight linesegments representing the edges are pairwise noncrossing. A O(n volume bound is proved for threedimensional grid drawings of graphs with bounded ..."
Abstract

Cited by 18 (12 self)
 Add to MetaCart
A threedimensional grid drawing of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight linesegments representing the edges are pairwise noncrossing. A O(n volume bound is proved for threedimensional grid drawings of graphs with bounded degree, graphs with bounded genus, and graphs with no bounded complete graph as a minor. The previous best bound for these graph families was O(n ). These results (partially) solve open problems due to Pach, Thiele, and Toth (1997) and Felsner, Liotta, and Wismath (2001).
ThreeDimensional 1Bend Graph Drawings
 Concordia University
, 2004
"... We consider threedimensional griddrawings of graphs with at most one bend per edge. Under the additional requirement that the vertices be collinear, we prove that the minimum volume of such a drawing is Θ(cn), where n is the number of vertices and c is the cutwidth of the graph. We then prove that ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
We consider threedimensional griddrawings of graphs with at most one bend per edge. Under the additional requirement that the vertices be collinear, we prove that the minimum volume of such a drawing is Θ(cn), where n is the number of vertices and c is the cutwidth of the graph. We then prove that every graph has a threedimensional griddrawing with O(n 3 / log 2 n) volume and one bend per edge. The best previous bound was O(n 3).
Nothreeinlinein3D
 In Proc. 12th Int. Symp. on Graph Drawing (GD’04) [GD004
, 2004
"... The nothreeinline problem, introduced by Dudeney in 1917, asks for the maximum number of points in the nn grid with no three points collinear. In 1951, Erdos proved that the answer is (n). We consider the analogous threedimensional problem, and prove that the maximum number of points in the ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The nothreeinline problem, introduced by Dudeney in 1917, asks for the maximum number of points in the nn grid with no three points collinear. In 1951, Erdos proved that the answer is (n). We consider the analogous threedimensional problem, and prove that the maximum number of points in the n n n grid with no three collinear is (n ).
Upward threedimensional grid drawings of graphs. arXiv.org math.CO/0510051
, 2005
"... Abstract. A threedimensional grid drawing of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce threedimensional grid drawings with small bounding box volume. Our first ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. A threedimensional grid drawing of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce threedimensional grid drawings with small bounding box volume. Our first main result is that every nvertex graph with bounded degeneracy has a threedimensional grid drawing with O(n 3/2) volume. This is the largest known class of graphs that have such drawings. A threedimensional grid drawing of a directed acyclic graph (dag) is upward if every arc points up in the zdirection. We prove that every dag has an upward threedimensional grid drawing with O(n 3) volume, which is tight for the complete dag. The previous best upper bound was O(n 4). Our main result concerning upward drawings is that every ccolourable dag (c constant) has an upward threedimensional grid drawing with O(n 2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n 3) for many classes of dags, including planar, series parallel, and outerplanar. Improved bounds are also obtained for tree dags. We prove a strong relationship between upward threedimensional grid drawings, upward track layouts, and upward queue layouts. Finally, we study upward threedimensional grid drawings with bends in the edges. 1.
Lower Bounds on the Area Requirements of SeriesParallel Graphs
, 2009
"... We show that there exist seriesparallel graphs requiring Ω(n2 √ logn) area in any straightline or polyline grid drawing. Such a result is achieved in two steps. First, we show that, in any straightline or polyline drawing of K2,n, one side of the bounding box has length Ω(n), thus answering two ..."
Abstract
 Add to MetaCart
We show that there exist seriesparallel graphs requiring Ω(n2 √ logn) area in any straightline or polyline grid drawing. Such a result is achieved in two steps. First, we show that, in any straightline or polyline drawing of K2,n, one side of the bounding box has length Ω(n), thus answering two questions posed by Biedl et al. [Information Processing Letters, 2003]. Second, we show a family of seriesparallel graphs requiring Ω(2 √ logn) width and Ω(2 √ logn) height in any straightline or polyline grid drawing. Combining the two results, the Ω(n2 √ logn) area lower bound is achieved. 2 1