Results 1 
4 of
4
Mapping Fusion and Synchronized Hyperedge Replacement into Logic Programming
 UNDER CONSIDERATION FOR PUBLICATION IN THEORY AND PRACTICE OF LOGIC PROGRAMMING
"... In this paper we compare three different formalisms that can be used in the area of models for distributed, concurrent and mobile systems. In particular we analyze the relationships between a process calculus, the Fusion Calculus, graph transformations in the Synchronized Hyperedge Replacement with ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
In this paper we compare three different formalisms that can be used in the area of models for distributed, concurrent and mobile systems. In particular we analyze the relationships between a process calculus, the Fusion Calculus, graph transformations in the Synchronized Hyperedge Replacement with Hoare synchronization (HSHR) approach and logic programming. We present a translation from Fusion Calculus into HSHR (whereas Fusion Calculus uses Milner synchronization) and prove a correspondence between the reduction semantics of Fusion Calculus and HSHR transitions. We also present a mapping from HSHR into a synchronized version of logic programming and prove that there is a full correspondence between the two formalisms. The resulting mapping from Fusion Calculus to logic programming is interesting since it shows the tight analogies between the two formalisms, in particular for handling name generation and mobility. The intermediate step in terms of HSHR is convenient since graph transformations allow for multiple, remote synchronizations, as required by Fusion Calculus semantics.
A Semantic Framework for Open Processes
"... We propose a general methodology for analysing the behaviour of open systems modelled as coordinators, i.e., open terms of suitable process calculi. A coordinator is understood as a process with holes or placeholders where other coordinators and components (i.e., closed terms) can be plugged in, th ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We propose a general methodology for analysing the behaviour of open systems modelled as coordinators, i.e., open terms of suitable process calculi. A coordinator is understood as a process with holes or placeholders where other coordinators and components (i.e., closed terms) can be plugged in, thus influencing its behaviour. The operational semantics of coordinators is given by means of a symbolic transition system, where states are coordinators and transitions are labelled by spatial/modal formulae expressing the potential interaction that plugged components may enable. Behavioural equivalences for coordinators, like strong and weak bisimilarities, can be straightforwardly defined over such a transition system. Differently from other approaches based on universal closures, i.e., where two coordinators are considered equivalent when all their closed instances are equivalent, our semantics preserves the openness of the system during its evolution, thus allowing dynamic instantiation to be accounted for in the semantics. To further support the adequacy of the construction, we show that our symbolic equivalences provide correct approximations of their universally closed counterparts, coinciding with them over closed components. For process calculi in suitable formats, we show how tractable symbolic semantics can be defined constructively using unification.
Comparing HigherOrder Encodings in Logical Frameworks and Tile Logic
, 2001
"... In recent years, logical frameworks and tile logic have been separately proposed by our research groups, respectively in Udine and in Pisa, as suitable metalanguages with higherorder features for encoding and studying nominal calculi. This paper discusses the main features of the two approaches, tr ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
In recent years, logical frameworks and tile logic have been separately proposed by our research groups, respectively in Udine and in Pisa, as suitable metalanguages with higherorder features for encoding and studying nominal calculi. This paper discusses the main features of the two approaches, tracing di#erences and analogies on the basis of two case studies: late #calculus and lazy simply typed #calculus.
Reactive Systems, (Semi)Saturated Semantics and Coalgebras on Presheaves
, 2009
"... The semantics of process calculi has traditionally been specified by labelled transition systems (ltss), but with the development of name calculi it turned out that reaction rules (i.e., unlabelled transition rules) are often more natural. This leads to the question of how behavioural equivalences ( ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The semantics of process calculi has traditionally been specified by labelled transition systems (ltss), but with the development of name calculi it turned out that reaction rules (i.e., unlabelled transition rules) are often more natural. This leads to the question of how behavioural equivalences (bisimilarity, trace equivalence, etc.) defined for lts can be transferred to unlabelled transition systems. Recently, in order to answer this question, several proposals have been made with the aim of automatically deriving an lts from reaction rules in such a way that the resulting equivalences are congruences. Furthermore these equivalences should agree with the standard semantics, whenever one exists. In this paper we propose saturated semantics, based on a weaker notion of observation and orthogonal to all the previous proposals, and we demonstrate the appropriateness of our semantics by means of two examples: logic programming and open Petri nets. We also show that saturated semantics can be efficiently characterized through the so called semisaturated games. Finally, we provide coalgebraic models relying on presheaves.