Results 1 
4 of
4
New Insights Into Smile, Mispricing and Value At Risk: The Hyperbolic Model
 Journal of Business
, 1998
"... We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical Black ..."
Abstract

Cited by 140 (7 self)
 Add to MetaCart
We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical BlackScholes model. We study implicit volatilities, the smile effect and the pricing performance. Exploiting the full power of the hyperbolic model, we construct an option value process from a statistical point of view by estimating the implicit riskneutral density function from option data. Finally we present some new valueat risk calculations leading to new perspectives to cope with model risk. I Introduction There is little doubt that the BlackScholes model has become the standard in the finance industry and is applied on a large scale in everyday trading operations. On the other side its deficiencies have become a standard topic in research. Given the vast literature where refinements a...
Generalized Hyperbolic Distributions
, 2002
"... The views expressed in this work are those of the authors and do not reflect those of the Banco Central or its members. Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced. As opiniões expressas neste trabalho são exclusivamente do(s ..."
Abstract
 Add to MetaCart
(Show Context)
The views expressed in this work are those of the authors and do not reflect those of the Banco Central or its members. Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced. As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem a visão do Banco Central do Brasil.
Working Paper Series ISSN 15183548 Generalized Hyperbolic Distributions and Brazilian Data
, 2002
"... :RUNLQJ3DSHU6HULHV Edited by: ..."
(Show Context)
Differential and Stochastic Differential Equations Arising from Mathematics of Finance
, 2011
"... In the standard modeling of the pricing of options and derivatives as generally understood these days the underlying process is taken to be a Wiener Process or a Levy Process. The stochastic process is modeled as a stochastic differential equation. From this equation a partial differential equation ..."
Abstract
 Add to MetaCart
In the standard modeling of the pricing of options and derivatives as generally understood these days the underlying process is taken to be a Wiener Process or a Levy Process. The stochastic process is modeled as a stochastic differential equation. From this equation a partial differential equation is obtained by application of the FeynmanKac Theorem. The resulting partial differential equation is of HamiltonJacobiBellman type. Analysis of the partial differential equations arising from Mathematics of Finance using the methods of the Lie Theory of Continuous Groups has been performed over the last twenty years, but it is only in recent years that there has been a concerted effort to make full use of the Lie theory. We propose an extension of Mahomed and Leach’s (1990) formula for the nthprolongation of an nthorder ordinary differential equation to the nthprolongation of the generator of an hyperbolic partial differential equation with p dependent and k independent variables. The symmetry analysis of this partial differential equation shows that the associated Lie algebra is {sl(2, R)⊕W3} ⊕s∞A1 with 12 optimal systems. A modeling approach based upon stochastic volatility for modeling prices in the deregulated