Results 1 
1 of
1
Linear Algorithms for Partitioning Embedded Graphs of Bounded Genus
 SIAM Journal of Discrete Mathematics
, 1996
"... This paper develops new techniques for constructing separators for graphs embedded on surfaces of bounded genus. For any arbitrarily small positive " we show that any nvertex graph G of genus g can be divided in O(n + g) time into components whose sizes do not exceed "n by removing a set ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
(Show Context)
This paper develops new techniques for constructing separators for graphs embedded on surfaces of bounded genus. For any arbitrarily small positive " we show that any nvertex graph G of genus g can be divided in O(n + g) time into components whose sizes do not exceed "n by removing a set C of O( p (g + 1=")n) vertices. Our result improves the best previous ones with respect to the size of C and the time complexity of the algorithm. Moreover, we show that one can cut off from G a piece of no more than (1 \Gamma ")n vertices by removing a set of O( p n"(g" + 1) vertices. Both results are optimal up to a constant factor. Keywords: graph separator, graph genus, algorithm, divideandconquer, topological graph theory AMS(MOS) subject classifications: 05C10, 05C85, 68R10 1 Bulgarian Academy of Sci., CICT, G.Bonchev 25A, 1113 Sofia, Bulgaria 2 Department of Comp.Sci.,Rice University, P.O.Box 1892, Houston, Texas 77251, USA 1 Introduction Let S be a class of graphs closed under t...