Results 1  10
of
18
OBBTree: A hierarchical structure for rapid interference detection
 Proc. ACM SIGGRAPH, 171–180
, 1996
"... {gottscha,lin,manocha}©cs. unc.edu We present a data structure and an algorithm for efficient and exact interference detection amongst complex models undergoing rigid motion. The algorithm is applicable to all general polygonal and curved models. It precomputes a hierarchical representation of mode ..."
Abstract

Cited by 658 (43 self)
 Add to MetaCart
{gottscha,lin,manocha}©cs. unc.edu We present a data structure and an algorithm for efficient and exact interference detection amongst complex models undergoing rigid motion. The algorithm is applicable to all general polygonal and curved models. It precomputes a hierarchical representation of models using tightfitting oriented bounding box trees. At runtime, the algorithm traverses the tree and tests for overlaps between oriented bounding boxes based on a new separating axis theorem, which takes less than 200 operations in practice. It has been implemented and we compare its performance with other hierarchical data structures. In particular, it can accurately detect all the contacts between large complex geometries composed of hundreds of thousands of polygons at interactive rates, almost one order of magnitude faster than earlier methods.
ICOLLIDE: An interactive and exact collision detection system for largescale environments
 In Proc. of ACM Interactive 3D Graphics Conference
, 1995
"... We present an exact and interactive collision detection system, ICOLLIDE, for largescale environments. Such environments are characterized by the number of objects undergoing rigid motion and the complexity of the models. The algorithm does not assume the objects ’ motions can be expressed as a c ..."
Abstract

Cited by 266 (26 self)
 Add to MetaCart
We present an exact and interactive collision detection system, ICOLLIDE, for largescale environments. Such environments are characterized by the number of objects undergoing rigid motion and the complexity of the models. The algorithm does not assume the objects ’ motions can be expressed as a closed form function of time. The collision detection system is general and can be easily interfaced with a variety of applications. The algorithm uses a twolevel approach based on pruning multipleobject pairs using bounding boxes and performing exact collision detection between selected pairs of polyhedral models. We demonstrate the performance of the system in walkthrough and simulation environments consisting of a large number of moving objects. In particular, the system takes less than l/20 of a second to determine all the collisions and contacts in an environment consisting of more than a 1000 moving polytopes, each consisting of more than 50 faces on an HP9000/750. 1
Collision Detection Between Geometric Models: A Survey
 In Proc. of IMA Conference on Mathematics of Surfaces
, 1998
"... In this paper, we survey the state of the art in collision detection between general geometric models. The set of models include polygonal objects, spline or algebraic surfaces, CSG models, and deformable bodies. We present a number of techniques and systems available for contact determination. We a ..."
Abstract

Cited by 184 (15 self)
 Add to MetaCart
In this paper, we survey the state of the art in collision detection between general geometric models. The set of models include polygonal objects, spline or algebraic surfaces, CSG models, and deformable bodies. We present a number of techniques and systems available for contact determination. We also describe several Nbody algorithms to reduce the number of pairwise intersection tests. 1 Introduction The goal of collision detection (also known as interference detection or contact determination) is to automatically report a geometric contact when it is about to occur or has actually occurred. The geometric models may be polygonal objects, splines, or algebraic surfaces. The problem is encountered in computeraided design and machining (CAD/CAM), robotics and automation, manufacturing, computer graphics, animation and computer simulated environments. Collision detection enables simulationbased design, tolerance verification, engineering analysis, assembly and disassembly, motion pla...
Fast proximity queries with swept sphere volumes
, 1999
"... We present novel algorithms for fast proximity queries using swept sphere volumes. The set of proximity queries includes collision detection and both exact and approximate separation distance computation. We introduce a new family of bounding volumes that correspond to a core primitive shape grown ..."
Abstract

Cited by 94 (19 self)
 Add to MetaCart
We present novel algorithms for fast proximity queries using swept sphere volumes. The set of proximity queries includes collision detection and both exact and approximate separation distance computation. We introduce a new family of bounding volumes that correspond to a core primitive shape grown outward by some offset. The set of core primitive shapes includes a point, line, and rectangle. This family of bounding volumes provides varying tightness of t to the underlying geometry. Furthermore, we describe efficient and accurate algorithms to perform different queries using these bounding volumes. We present a novel analysis of proximity queries that highlights the relationship between collision detection and distance computation. We also present traversal techniques for accelerating distance queries. These algorithms have been used to perform proximity queries for applications including virtual prototyping, dynamic simulation, and motion planning on complex models. As compared to earlier algorithms based on bounding volume hierarchies for separation distance and approximate distance computation, our algorithms have
Incremental algorithms for collision detection between solid models
 IEEE Transactions on Visualization and Computer Graphics
, 1995
"... solid models ..."
Fast Distance Queries with Rectangular Swept Sphere Volumes
 Proc. of IEEE Int. Conference on Robotics and Automation
, 2000
"... : We present new distance computation algorithms using hierarchies of rectangular swept spheres. Each bounding volume of the tree is described as the Minkowski sum of a rectangle and a sphere, and fits tightly to the underlying geometry. We present accurate and efficient algorithms to build the hier ..."
Abstract

Cited by 48 (13 self)
 Add to MetaCart
: We present new distance computation algorithms using hierarchies of rectangular swept spheres. Each bounding volume of the tree is described as the Minkowski sum of a rectangle and a sphere, and fits tightly to the underlying geometry. We present accurate and efficient algorithms to build the hierarchies and perform distance queries between the bounding volumes. We also present traversal techniques for accelerating distance queries using coherence and priority directed search. These algorithms have been used to perform proximity queries for applications including virtual prototyping, dynamic simulation, and motion planning on complex models. As compared to earlier algorithms based on bounding volume hierarchies for separation distance and approximate distance computation, our algorithms have achieved significant speedups on many benchmarks. 1
Spherical shell: A higher order bounding volume for fast proximity queries
 In Proc. of Third International Workshop on Algorithmic Foundations of Robotics
"... Hierarchical data structures have been widely used to design e cient algorithms for interference detection for robot motion planning and physicallybased modeling applications. Most of the hierarchies involve use of bounding volumes which enclose the underlying geometry. These bounding volumes are u ..."
Abstract

Cited by 46 (9 self)
 Add to MetaCart
Hierarchical data structures have been widely used to design e cient algorithms for interference detection for robot motion planning and physicallybased modeling applications. Most of the hierarchies involve use of bounding volumes which enclose the underlying geometry. These bounding volumes are used to test for interference orcompute distance bounds between the underlying geometry. The e ciency of a hierarchy is directly proportional to the choice ofabounding volume. In this paper, we introduce spherical shells, a higher order bounding volume for fast proximity queries. Each shell corresponds to a portion of the volume between two concentric spheres. We present algorithms to compute tight tting shells and fast overlap between two shells. Moreover, we show that spherical shells provide local cubic convergence to the underlying geometry. As aresult, in many cases they provide faster algorithms for interference detection and distance computation as compared toearlier methods. We also describe an implementation and compare it with other hierarchies. 1
Accelerated Proximity Queries Between Convex Polyhedra By MultiLevel Voronoi Marching
 Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems
, 2000
"... We present an accelerated proximity query algorithm between moving convex polyhedra. The algorithm combines Voronoibased feature tracking with a multilevelofdetail representation, in order to adapt to the variation in levels of coherence and speed up the computation. It provides a progressive re ..."
Abstract

Cited by 41 (14 self)
 Add to MetaCart
We present an accelerated proximity query algorithm between moving convex polyhedra. The algorithm combines Voronoibased feature tracking with a multilevelofdetail representation, in order to adapt to the variation in levels of coherence and speed up the computation. It provides a progressive refinement framework for collision detection and distance queries. We have implemented our algorithm and have observed significant performance improvements in our experiments, especially on scenarios where the coherence is low. 1 Introduction Proximity queries, i.e. distance 1 computations and the closely related collision detection problems, are ubiquitous in robotics, design automation, manufacturing, assembly and virtual prototyping. The set of tasks include motion planning, sensorbased manipulation, assembly and disassembly, dynamic simulation, maintainability study, simulationbased design, tolerance verification, and ergonomics analysis. Proximity queries have been extensively stud...
Fast and Accurate Collision Detection for Haptic Interaction Using a Three DegreeofFreedom ForceFeedback Device
 In Proceedings of Virtual Reality Conference
"... We present a fast and accurate collision detection algorithm for haptic interaction with polygonal models. Given a model, we precompute a hybrid hierarchical representation, consisting of uniform grids (represented using a hash table) and trees of tightfitting oriented bounding box trees (OBBTrees ..."
Abstract

Cited by 39 (0 self)
 Add to MetaCart
We present a fast and accurate collision detection algorithm for haptic interaction with polygonal models. Given a model, we precompute a hybrid hierarchical representation, consisting of uniform grids (represented using a hash table) and trees of tightfitting oriented bounding box trees (OBBTrees). At run time, we use hybrid hierarchical representations and exploit frametoframe coherence for fast proximity queries. We describe a new overlap test, which is specialized for intersection of a line segment with an oriented bounding box for haptic simulation and takes 4272 operations including transformation costs. The algorithms have been implemented as part of HCOLLIDE and interfaced with a PHANToM arm and its haptic toolkit, GHOST, and applied to a number of models. As compared to the commercial implementation, we are able to achieve up to 20 times speedup in our experiments and sustain update rates over 1000Hz on a 400MHz Pentium II. In practice, our prototype implementation can a...
IMMPACT: Partitioning and Handling Massive Models for Interactive Collision Detection
 of Eurographics
, 1999
"... We describe an approach for interactive collision detection and proximity computations on massive models composed of millions of geometric primitives. We address issues related to interactive data access and processing in a large geometric database, which may not fit into main memory of typical desk ..."
Abstract

Cited by 24 (6 self)
 Add to MetaCart
We describe an approach for interactive collision detection and proximity computations on massive models composed of millions of geometric primitives. We address issues related to interactive data access and processing in a large geometric database, which may not fit into main memory of typical desktop workstations or computers. We present a new algorithm using overlap graphs for localizing the “regions of interest " within a massive model, thereby reducing runtime memory requirements. The overlap graph is computed offline, preprocessed using graph partitioning algorithms, and modified on the fly as needed. At run time, we traverse localized subgraphs to check the corresponding geometry for proximity and prefetch geometry and auxiliary data structures. To perform interactive proximity queries, we use boundingvolume hierarchies and take advantage of spatial and temporal coherence. Based on the proposed algorithms, we have developed a system called IMMPACT and used it for interaction with a CAD model of a power plant consisting of over 15 million triangles. We are able to perform a number of proximity queries in realtime on such a model. In terms of model complexity and application to large models, we have improved the performance of interactive collision detection and proximity computation algorithms by an order of magnitude. 1.