Results 1 
5 of
5
Global minimization using an Augmented Lagrangian method with variable lowerlevel constraints
, 2007
"... A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global c ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global convergence to an εglobal minimizer of the original problem is proved. The subproblems are solved using the αBB method. Numerical experiments are presented.
Global Optimization in Generalized Geometric Programming
 Engng
, 1997
"... A deterministic global optimization algorithm is proposed for locating the global minimum of generalized geometric (signomial) problems (GGP). By utilizing an exponential variable transformation the initial nonconvex problem (GGP) is reduced to a (DC) programming problem where both the constraints ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
(Show Context)
A deterministic global optimization algorithm is proposed for locating the global minimum of generalized geometric (signomial) problems (GGP). By utilizing an exponential variable transformation the initial nonconvex problem (GGP) is reduced to a (DC) programming problem where both the constraints and the objective are decomposed into the difference of two convex functions. A convex relaxation of problem (DC) is then obtained based on the linear lower bounding of the concave parts of the objective function and constraints inside some box region. The proposed branch and bound type algorithm attains finite fflconvergence to the global minimum through the successive refinement of a convex relaxation of the feasible region and/or of the objective function and the subsequent solution of a series of nonlinear convex optimization problems. The efficiency of the proposed approach is enhanced by eliminating variables through monotonicity analysis, by maintaining tightly bound variables thro...
Deterministic Global Optimization In Design, Control, And Computational Chemistry
 IMA Volumes in Mathematics and its Applications : Large Scale Optimization with Applications, Part II
, 1997
"... . This paper presents an overview of the deterministic global optimization approaches and their applications in the areas of Process Design, Control, and Computational Chemistry. The focus is on (i) decompositionbased primal dual methods, (ii) methods for generalized geometric programming problems, ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
. This paper presents an overview of the deterministic global optimization approaches and their applications in the areas of Process Design, Control, and Computational Chemistry. The focus is on (i) decompositionbased primal dual methods, (ii) methods for generalized geometric programming problems, and (iii) global optimization methods for general nonlinear programming problems. The classes of mathematical problems that are addressed range from indefinite quadratic programming to concave programs, to quadratically constrained problems, to polynomials, to general twice continuously differentiable nonlinear optimization problems. For the majority of the presented methods nondistributed global optimization approaches are discussed with the exception of decompositionbased methods where a distributed global optimization approach is presented. 1. Background. A significant effort has been expended in the last five decades toward theoretical and algorithmic studies of applications that arise...
Recent Advances in Global Optimization for Process Synthesis, Design and Control: Enclosure of All Solutions
 Computers and Chemical Engineering
, 1999
"... Recent advances in global optimization for process synthesis, design and control are discussed. After a review of the chemical engineering contributions, we focus on the enclosure of all solutions of nonlinear constrained systems of equations. Important theoretical results are presented accompanied ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Recent advances in global optimization for process synthesis, design and control are discussed. After a review of the chemical engineering contributions, we focus on the enclosure of all solutions of nonlinear constrained systems of equations. Important theoretical results are presented accompanied with computational studies on the enclosure of multiple steady states and all homogeneous azeotropes. 1 Introduction and Review A significant effort has been expended in the last four decades toward theoretical and algorithmic studies of applications that arise in Chemical Engineering Process Design, Process Synthesis, Process Control, as well as in Computational Chemistry and Molecular Biology. In the last decade we have experienced a dramatic growth of interest in Chemical Engineering for new methods of global optimization and their application to important engineering, as well as computational chemistry and molecular biology problems. Contributions from the chemical engineering communit...
Global Optimization In Design And Control Of Chemical Process Systems
 J. of Proc. Control
, 2001
"... : This paper presents an overview of the recent advances in deterministic global optimization approaches and their applications in the areas of Process Design and Control. The focus is on global optimization methods for (a) twicedifferentiable constrained nonlinear optimization problems, (b) mixed ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
: This paper presents an overview of the recent advances in deterministic global optimization approaches and their applications in the areas of Process Design and Control. The focus is on global optimization methods for (a) twicedifferentiable constrained nonlinear optimization problems, (b) mixedinteger nonlinear optimization problems, and (c) locating all solutions of nonlinear systems of equations. Theoretical advances and computational studies on process design, batch design under uncertainty, phase equilibrium, location of azeotropes, stability margin, process synthesis, and parameter estimation problems are discussed. Keywords: Global Optimization; Twice Differentiable NLPs; MixedInteger Nonlinear Optimization; Locating All Solutions; ffBB approach, Design and Control 1. INTRODUCTION A significant effort has been expended in the last five decades toward theoretical and algorithmic studies of applications that arise in Process Design and Control. In the last decade we have expe...