Results 1  10
of
148
A comparative analysis of selection schemes used in genetic algorithms
 Foundations of Genetic Algorithms
, 1991
"... This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or d ..."
Abstract

Cited by 512 (32 self)
 Add to MetaCart
This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state&quot;) selection are compared on the basis of solutions to deterministic difference or differential equations, which are verified through computer simulations. The analysis provides convenient approximate or exact solutions as well as useful convergence time and growth ratio estimates. The paper recommends practical application of the analyses and suggests a number of paths for more detailed analytical investigation of selection techniques. Keywords: proportionate selection, ranking selection, tournament selection, Genitor, takeover time, time complexity, growth ratio. 1
PopulationBased Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning
, 1994
"... Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within th ..."
Abstract

Cited by 352 (12 self)
 Add to MetaCart
Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within the framework of competitive learning. This new perspective reveals a number of different possibilities for performance improvements. This paper explores populationbased incremental learning (PBIL), a method of combining the mechanisms of a generational genetic algorithm with simple competitive learning. The combination of these two methods reveals a tool which is far simpler than a GA, and which outperforms a GA on large set of optimization problems in terms of both speed and accuracy. This paper presents an empirical analysis of where the proposed technique will outperform genetic algorithms, and describes a class of problems in which a genetic algorithm may be able to perform better. Extensions to this algorithm are discussed and analyzed. PBIL and extensions are compared with a standard GA on twelve problems, including standard numerical optimization functions, traditional GA test suite problems, and NPComplete problems.
Designing Efficient And Accurate Parallel Genetic Algorithms
, 1999
"... Parallel implementations of genetic algorithms (GAs) are common, and, in most cases, they succeed to reduce the time required to find acceptable solutions. However, the effect of the parameters of parallel GAs on the quality of their search and on their efficiency are not well understood. This insuf ..."
Abstract

Cited by 293 (5 self)
 Add to MetaCart
Parallel implementations of genetic algorithms (GAs) are common, and, in most cases, they succeed to reduce the time required to find acceptable solutions. However, the effect of the parameters of parallel GAs on the quality of their search and on their efficiency are not well understood. This insufficient knowledge limits our ability to design fast and accurate parallel GAs that reach the desired solutions in the shortest time possible. The goal of this dissertation is to advance the understanding of parallel GAs and to provide rational guidelines for their design. The research reported here considered three major types of parallel GAs: simple masterslave algorithms with one population, more sophisticated algorithms with multiple populations, and a hierarchical combination of the first two types. The investigation formulated simple models that predict accurately the quality of the solutions with different parameter settings. The quality predictors were transformed into populationsizing equations, which in turn were used to estimate the execution time of the algorithms.
On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts  Towards Memetic Algorithms
, 1989
"... Short abstract, isn't it? P.A.C.S. numbers 05.20, 02.50, 87.10 1 Introduction Large Numbers "...the optimal tour displayed (see Figure 6) is the possible unique tour having one arc fixed from among 10 655 tours that are possible among 318 points and have one arc fixed. Assuming that ..."
Abstract

Cited by 241 (10 self)
 Add to MetaCart
Short abstract, isn't it? P.A.C.S. numbers 05.20, 02.50, 87.10 1 Introduction Large Numbers "...the optimal tour displayed (see Figure 6) is the possible unique tour having one arc fixed from among 10 655 tours that are possible among 318 points and have one arc fixed. Assuming that one could possibly enumerate 10 9 tours per second on a computer it would thus take roughly 10 639 years of computing to establish the optimality of this tour by exhaustive enumeration." This quote shows the real difficulty of a combinatorial optimization problem. The huge number of configurations is the primary difficulty when dealing with one of these problems. The quote belongs to M.W Padberg and M. Grotschel, Chap. 9., "Polyhedral computations", from the book The Traveling Salesman Problem: A Guided tour of Combinatorial Optimization [124]. It is interesting to compare the number of configurations of realworld problems in combinatorial optimization with those large numbers arising in Cosmol...
Niching Methods for Genetic Algorithms
, 1995
"... Niching methods extend genetic algorithms to domains that require the location and maintenance of multiple solutions. Such domains include classification and machine learning, multimodal function optimization, multiobjective function optimization, and simulation of complex and adaptive systems. This ..."
Abstract

Cited by 232 (1 self)
 Add to MetaCart
(Show Context)
Niching methods extend genetic algorithms to domains that require the location and maintenance of multiple solutions. Such domains include classification and machine learning, multimodal function optimization, multiobjective function optimization, and simulation of complex and adaptive systems. This study presents a comprehensive treatment of niching methods and the related topic of population diversity. Its purpose is to analyze existing niching methods and to design improved niching methods. To achieve this purpose, it first develops a general framework for the modelling of niching methods, and then applies this framework to construct models of individual niching methods, specifically crowding and sharing methods. Using a constructed model of crowding, this study determines why crowding methods over the last two decades have not made effective niching methods. A series of tests and design modifications results in the development of a highly effective form of crowding, called determin...
A Survey of Parallel Genetic Algorithms
 CALCULATEURS PARALLELES, RESEAUX ET SYSTEMS REPARTIS
, 1998
"... Genetic algorithms (GAs) are powerful search techniques that are used successfully to solve problems in many different disciplines. Parallel GAs are particularly easy to implement and promise substantial gains in performance. As such, there has been extensive research in this field. This survey att ..."
Abstract

Cited by 172 (5 self)
 Add to MetaCart
Genetic algorithms (GAs) are powerful search techniques that are used successfully to solve problems in many different disciplines. Parallel GAs are particularly easy to implement and promise substantial gains in performance. As such, there has been extensive research in this field. This survey attempts to collect, organize, and present in a unified way some of the most representative publications on parallel genetic algorithms. To organize the literature, the paper presents a categorization of the techniques used to parallelize GAs, and shows examples of all of them. However, since the majority of the research in this field has concentrated on parallel GAs with multiple populations, the survey focuses on this type of algorithms. Also, the paper describes some of the most significant problems in modeling and designing multipopulation parallel GAs and presents some recent advancements.
Selection in Massively Parallel Genetic Algorithms
 PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS
, 1991
"... The availability of massively parallel computers makes it possible to apply genetic algorithms to large populations and very complex applications. Among these applications are studies of natural evolution in the emerging field of artificial life, which place special demands on the genetic algorit ..."
Abstract

Cited by 143 (1 self)
 Add to MetaCart
(Show Context)
The availability of massively parallel computers makes it possible to apply genetic algorithms to large populations and very complex applications. Among these applications are studies of natural evolution in the emerging field of artificial life, which place special demands on the genetic algorithm. In this paper, we characterize the difference between panmictic and local selection/mating schemes in terms of diversity of alleles, diversity of genotypes, the inbreeding coefficient, and the speed and robustness of the genetic algorithm. Based on these metrics, local mating appears to not only be superior to panmictic for artificial evolutionary simulations, but also for more traditional applications of genetic algorithms.
The Quadratic Assignment Problem: A Survey and Recent Developments
 In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1994
"... . Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment probl ..."
Abstract

Cited by 114 (16 self)
 Add to MetaCart
(Show Context)
. Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment problem. We focus our attention on recent developments. 1. Introduction Given a set N = f1; 2; : : : ; ng and n \Theta n matrices F = (f ij ) and D = (d kl ), the quadratic assignment problem (QAP) can be stated as follows: min p2\Pi N n X i=1 n X j=1 f ij d p(i)p(j) + n X i=1 c ip(i) ; where \Pi N is the set of all permutations of N . One of the major applications of the QAP is in location theory where the matrix F = (f ij ) is the flow matrix, i.e. f ij is the flow of materials from facility i to facility j, and D = (d kl ) is the distance matrix, i.e. d kl represents the distance from location k to location l [62, 67, 137]. The cost of simultaneously assigning facility i to locat...
Searching for Diverse, Cooperative Populations with Genetic Algorithms
 EVOLUTIONARY COMPUTATION
, 1993
"... In typical applications, genetic algorithms (GAs) process populations of potential problem solutions to evolve a single population member that specifies an "optimized" solution. The majority of GA analysis has focused on these optimization applications. In other applications (notably le ..."
Abstract

Cited by 112 (10 self)
 Add to MetaCart
In typical applications, genetic algorithms (GAs) process populations of potential problem solutions to evolve a single population member that specifies an "optimized" solution. The majority of GA analysis has focused on these optimization applications. In other applications (notably learning classifier systems and certain connectionist learning systems), a GA searches for a population of cooperative structures that jointly perform a computational task. This paper presents an analysis of this type of GA problem. The analysis considers a simplified geneticsbased machine learning system: a model of an immune system. In this model, a GA must discover a set of patternmatching antibodies that effectively match a set of antigen patterns. Analysis shows how a GA can automatically evolve and sustain a diverse, cooperative population. The cooperation emerges as a natural part of the antigenantibody matching procedure. This emergent effect is shown to be similar to fitness sharing, ...