Results 1 
3 of
3
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 520 (40 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows: ffl We devise a model for dynamic graph algorithms, based on performing queries and updates on an implicit representation of the drawing, and we show its applications. ffl We present several efficient dynamic drawing algorithms for trees, seriesparallel digraphs, planar stdigraphs, and planar graphs. These algorithms adopt a variety of representations (e.g., straightline, polyline, visibility), and update the drawing in a smooth way.
Graph Drawing
 Lecture Notes in Computer Science
, 1997
"... INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as software engineering, database systems, visual interfaces, and computeraideddesign. Research on graph drawing has been conducte ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as software engineering, database systems, visual interfaces, and computeraideddesign. Research on graph drawing has been conducted within several diverse areas, including discrete mathematics (topological graph theory, geometric graph theory, order theory), algorithmics (graph algorithms, data structures, computational geometry, vlsi), and humancomputer interaction (visual languages, graphical user interfaces, software visualization). This chapter overviews aspects of graph drawing that are especially relevant to computational geometry. Basic definitions on drawings and their properties are given in Section 1.1. Bounds on geometric and topological properties of drawings (e.g., area and crossings) are presented in Section 1.2. Section 1.3 deals with the time complexity of fundamental graph drawin
2Visibility Drawings of Planar Graphs
, 1997
"... In a 2visibility drawing the vertices of a given graph are represented by rectangular boxes and the adjacency relations are expressed by horizontal and vertical lines drawn between the boxes. In this paper we want to emphasize this model as a practical alternative to other representations of graphs ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
In a 2visibility drawing the vertices of a given graph are represented by rectangular boxes and the adjacency relations are expressed by horizontal and vertical lines drawn between the boxes. In this paper we want to emphasize this model as a practical alternative to other representations of graphs, and to demonstrate the quality of the produced drawings. We give several approaches, heuristics as well as provably good algorithms, to represent planar graphs within this model. To this, we present a polynomial time algorithm to compute a bendminimum orthogonal drawing under the restriction that the number of bends at each edge is at most 1.