Results 1 
2 of
2
Metalogical Frameworks
, 1992
"... In computer science we speak of implementing a logic; this is done in a programming language, such as Lisp, called here the implementation language. We also reason about the logic, as in understanding how to search for proofs; these arguments are expressed in the metalanguage and conducted in the me ..."
Abstract

Cited by 57 (15 self)
 Add to MetaCart
In computer science we speak of implementing a logic; this is done in a programming language, such as Lisp, called here the implementation language. We also reason about the logic, as in understanding how to search for proofs; these arguments are expressed in the metalanguage and conducted in the metalogic of the object language being implemented. We also reason about the implementation itself, say to know it is correct; this is done in a programming logic. How do all these logics relate? This paper considers that question and more. We show that by taking the view that the metalogic is primary, these other parts are related in standard ways. The metalogic should be suitably rich so that the object logic can be presented as an abstract data type, and it must be suitably computational (or constructive) so that an instance of that type is an implementation. The data type abstractly encodes all that is relevant for metareasoning, i.e., not only the term constructing functions but also the...
Experience with FS 0 as a framework theory
, 1993
"... Feferman has proposed a system, FS 0 , as an alternative framework for encoding logics and also for reasoning about those encodings. We have implemented a version of this framework and performed experiments that show that it is practical. Specifically, we describe a formalisation of predicate calcul ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
Feferman has proposed a system, FS 0 , as an alternative framework for encoding logics and also for reasoning about those encodings. We have implemented a version of this framework and performed experiments that show that it is practical. Specifically, we describe a formalisation of predicate calculus and the development of an admissible rule that manipulates formulae with bound variables. This application will be of interest to researchers working with frameworks that use mechanisms based on substitution in the lambda calculus to implement variable binding and substitution in the declared logic directly. We suggest that metatheoretic reasoning, even for a theory using bound variables, is not as difficult as is often supposed, and leads to more powerful ways of reasoning about the encoded theory. x 1 Introduction: why metamathematics? A logical framework is a formal theory that is designed for the purpose of describing other formal theories in a uniform way, and for making the work ...