Results 1 
2 of
2
Recursive Types in Kleisli Categories
 Preprint 2004. MFPS Tutorial, April 2007 Classical Domain Theory 75/75
, 1992
"... We show that an enriched version of Freyd's principle of versality holds in the Kleisli category of a commutative strong monad with fixedpoint object. This gives a general categorical setting in which it is possible to model recursive types involving the usual datatype constructors. ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
(Show Context)
We show that an enriched version of Freyd's principle of versality holds in the Kleisli category of a commutative strong monad with fixedpoint object. This gives a general categorical setting in which it is possible to model recursive types involving the usual datatype constructors.
The Convex Powerdomain in a Category of Posets Realized By Cpos
 In Proc. Category Theory and Computer Science
, 1995
"... . We construct a powerdomain in a category whose objects are posets of data equipped with a cpo of "intensional" representations of the data, and whose morphisms are those monotonic functions between posets that are "realized" by continuous functions between the associated cpos. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
. We construct a powerdomain in a category whose objects are posets of data equipped with a cpo of "intensional" representations of the data, and whose morphisms are those monotonic functions between posets that are "realized" by continuous functions between the associated cpos. The category of cpos is contained as a full subcategory that is preserved by lifting, sums, products and function spaces. The construction of the powerdomain uses a cpo of binary trees, these being intensional representations of nondeterministic computation. The powerdomain is characterized as the free semilattice in the category. In contrast to the other type constructors, the powerdomain does not preserve the subcategory of cpos. Indeed we show that the powerdomain has interesting computational properties that differ from those of the usual convex powerdomain on cpos. We end by considering the solution of recursive domain equations. The surprise here is that the limitcolimit coincidence fails. Nevertheless, ...