Results 1 
2 of
2
Dynamic Trees and Dynamic Point Location
 In Proc. 23rd Annu. ACM Sympos. Theory Comput
, 1991
"... This paper describes new methods for maintaining a pointlocation data structure for a dynamicallychanging monotone subdivision S. The main approach is based on the maintenance of two interlaced spanning trees, one for S and one for the graphtheoretic planar dual of S. Queries are answered by using ..."
Abstract

Cited by 46 (11 self)
 Add to MetaCart
This paper describes new methods for maintaining a pointlocation data structure for a dynamicallychanging monotone subdivision S. The main approach is based on the maintenance of two interlaced spanning trees, one for S and one for the graphtheoretic planar dual of S. Queries are answered by using a centroid decomposition of the dual tree to drive searches in the primal tree. These trees are maintained via the linkcut trees structure of Sleator and Tarjan, leading to a scheme that achieves vertex insertion/deletion in O(log n) time, insertion/deletion of kedge monotone chains in O(log n + k) time, and answers queries in O(log 2 n) time, with O(n) space, where n is the current size of subdivision S. The techniques described also allow for the dual operations expand and contract to be implemented in O(log n) time, leading to an improved method for spatial pointlocation in a 3dimensional convex subdivision. In addition, the interlacedtree approach is applied to online pointlo...
RAY SHOOTING AND OTHER APPLICATIONS OF SPANNING TREES WITH LOW STABBING NUMBER
, 1992
"... This paper considers the following problem: Given a set G of n (possibly intersecting) line segments in the plane, prcproccss it so that, given a query ray p emanating from a point p, one can quickly compute the intersection point &(G, p) of p with a segment of G that lies nearest to p. The paper pr ..."
Abstract

Cited by 32 (12 self)
 Add to MetaCart
This paper considers the following problem: Given a set G of n (possibly intersecting) line segments in the plane, prcproccss it so that, given a query ray p emanating from a point p, one can quickly compute the intersection point &(G, p) of p with a segment of G that lies nearest to p. The paper presents an algorithm that preproccsses G, in time 0 ( 3/2 log n), into a data structure of size O(nc(n) log4 n), so that for a query ray p, /,(, p) can be computed in time O(v/nc(ni log2 n), where w is a constant < 4.33 and a(n) is a functional inverse of Ackermannâ€™s function. If the given segments are nonintersecting, the storage goes down to O(n log3 n) and the query time becomes O(v/ log2 n). The main tool used is spanning trees (on the set of segment endpoints) with low stabbing number, i.e., with the property that no line intersects more than O(x/) edges of the tree. Such trees make it possible to obtain faster algorithms for several other problems, including implicit point location, polygon containment, and implicit hidden surface removal.