Results 1  10
of
18
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 172 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...
Probabilistic independence networks for hidden Markov probability models
, 1996
"... Graphical techniques for modeling the dependencies of random variables have been explored in a variety of different areas including statistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics. Formalisms for manipulating these models have been develop ..."
Abstract

Cited by 167 (12 self)
 Add to MetaCart
Graphical techniques for modeling the dependencies of random variables have been explored in a variety of different areas including statistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics. Formalisms for manipulating these models have been developed relatively independently in these research communities. In this paper we explore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independence networks (PINs). The paper contains a selfcontained review of the basic principles of PINs. It is shown that the wellknown forwardbackward (FB) and Viterbi algorithms for HMMs are special cases of more general inference algorithms for arbitrary PINs. Furthermore, the existence of inference and estimation algorithms for more general graphical models provides a set of analysis tools for HMM practitioners who wish to explore a richer class of HMM structures. Examples of relatively complex models to handle sensor fusion and coarticulation in speech recognition are introduced and treated within the graphical model framework to illustrate the advantages of the general approach.
Dependency networks for inference, collaborative filtering, and data visualization
 Journal of Machine Learning Research
"... We describe a graphical model for probabilistic relationshipsan alternative tothe Bayesian networkcalled a dependency network. The graph of a dependency network, unlike aBayesian network, is potentially cyclic. The probability component of a dependency network, like aBayesian network, is a set of ..."
Abstract

Cited by 159 (10 self)
 Add to MetaCart
We describe a graphical model for probabilistic relationshipsan alternative tothe Bayesian networkcalled a dependency network. The graph of a dependency network, unlike aBayesian network, is potentially cyclic. The probability component of a dependency network, like aBayesian network, is a set of conditional distributions, one for each nodegiven its parents. We identify several basic properties of this representation and describe a computationally e cient procedure for learning the graph and probability components from data. We describe the application of this representation to probabilistic inference, collaborative ltering (the task of predicting preferences), and the visualization of acausal predictive relationships.
Inference in belief networks: A procedural guide
 International Journal of Approximate Reasoning
, 1996
"... Belief networks are popular tools for encoding uncertainty in expert systems. These networks rely on inference algorithms to compute beliefs in the context of observed evidence. One established method for exact inference onbelief networks is the Probability Propagation in Trees of Clusters (PPTC) al ..."
Abstract

Cited by 149 (6 self)
 Add to MetaCart
Belief networks are popular tools for encoding uncertainty in expert systems. These networks rely on inference algorithms to compute beliefs in the context of observed evidence. One established method for exact inference onbelief networks is the Probability Propagation in Trees of Clusters (PPTC) algorithm, as developed byLauritzen and Spiegelhalter and re ned by Jensen et al. [1, 2, 3] PPTC converts the belief network into a secondary structure, then computes probabilities by manipulating the secondary structure. In this document, we provide a selfcontained, procedural guide to understanding and implementing PPTC. We synthesize various optimizations to PPTC that are scattered throughout the literature. We articulate undocumented, \open secrets " that are vital to producing a robust and e cient implementation of PPTC. We hope that this document makes probabilistic inference more accessible and a ordable to those without extensive prior exposure.
An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation
 Proc. of the Eighth Conference on Uncertainty in Artificial Intelligence
, 1992
"... In a previous paper [8] we presented an algorithm for extracting causal influences from independence information, where a causal influence was defined as the existence of a directed arc in all minimal causal models consistent with the data. In this paper we address the question of deciding whether t ..."
Abstract

Cited by 60 (1 self)
 Add to MetaCart
In a previous paper [8] we presented an algorithm for extracting causal influences from independence information, where a causal influence was defined as the existence of a directed arc in all minimal causal models consistent with the data. In this paper we address the question of deciding whether there exists a causal model that explains ALL the observed dependencies and independencies. Formally, given a list M of conditional independence statements, it is required to decide whether there exists a directed acyclic graph D that is perfectly consistent with M, namely, every statement in M, and no other, is reflected via dseparation in D. We present and analyze an effective algorithm that tests for the existence of such a dag, and produces one, if it exists. Key words: Causal modeling, graphoids, conditional independence. 1 1 Introduction Directed acyclic graphs (dags) have been widely used for modeling statistical data. Starting with the pioneering work of Sewal Wright [...
An Alternative Markov Property for Chain Graphs
 Scand. J. Statist
, 1996
"... Graphical Markov models use graphs, either undirected, directed, or mixed, to represent possible dependences among statistical variables. Applications of undirected graphs (UDGs) include models for spatial dependence and image analysis, while acyclic directed graphs (ADGs), which are especially conv ..."
Abstract

Cited by 49 (4 self)
 Add to MetaCart
Graphical Markov models use graphs, either undirected, directed, or mixed, to represent possible dependences among statistical variables. Applications of undirected graphs (UDGs) include models for spatial dependence and image analysis, while acyclic directed graphs (ADGs), which are especially convenient for statistical analysis, arise in such fields as genetics and psychometrics and as models for expert systems and Bayesian belief networks. Lauritzen, Wermuth, and Frydenberg (LWF) introduced a Markov property for chain graphs, which are mixed graphs that can be used to represent simultaneously both causal and associative dependencies and which include both UDGs and ADGs as special cases. In this paper an alternative Markov property (AMP) for chain graphs is introduced, which in some ways is a more direct extension of the ADG Markov property than is the LWF property for chain graph. 1 INTRODUCTION Graphical Markov models use graphs, either undirected, directed, or mixed, to represent...
Identifying Independencies in Causal Graphs with Feedback
 In Uncertainty in Artificial Intelligence: Proceedings of the Twelfth Conference
, 1996
"... We show that the dseparation criterion constitutes a valid test for conditional independence relationships that are induced by feedback systems involving discrete variables. 1 INTRODUCTION It is well known that the dseparation test is sound and complete relative to the independencies assumed in t ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
We show that the dseparation criterion constitutes a valid test for conditional independence relationships that are induced by feedback systems involving discrete variables. 1 INTRODUCTION It is well known that the dseparation test is sound and complete relative to the independencies assumed in the construction of Bayesian networks [Verma and Pearl, 1988, Geiger et al., 1990]. In other words, any dseparation condition in the network corresponds to a genuine independence condition in the underlying probability distribution and, conversely, every dconnection corresponds to a dependency in at least one distribution compatible with the network. The situation with feedback systems is more complicated, primarily because the probability distributions associated with such systems do not lend themselves to a simple product decomposition. The joint distribution of feedback systems cannot be written as a product of the conditional distributions of each child variable, given its parents. Rath...
Towards Perceptual Intelligence: Statistical Modeling of Human Individual and Interactive Behaviors
 Prediction of Human Behavior, IEEE Intelligent Vehicles
, 1995
"... This thesis presents a computational framework for the automatic recognition and prediction of different kinds of human behaviors from video cameras and other sensors, via perceptually intelligent systems that automatically sense and correctly classify human behaviors, by means of Machine Perception ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
This thesis presents a computational framework for the automatic recognition and prediction of different kinds of human behaviors from video cameras and other sensors, via perceptually intelligent systems that automatically sense and correctly classify human behaviors, by means of Machine Perception and Machine Learning techniques. In the thesis I develop the statistical machine learning algorithms (dynamic graphical models) necessary for detecting and recognizing individual and interactive behaviors. In the case of the interactions two Hidden Markov Models (HMMs) are coupled in a novel architecture called Coupled Hidden Markov Models (CHMMs) that explicitly captures the interactions between them. The algorithms for learning the parameters from data as well as for doing inference with those models are developed and described. Four systems that experimentally evaluate the proposed paradigm are presented: (1) LAFTER, an automatic face detection and tracking system with facial expression recognition; (2) a TaiChi gesture recognition system; (3) a pedestrian surveillance system that recognizes typical human to human interactions; (4) and a SmartCar for driver maneuver recognition. These systems capture human behaviors of different nature and increasing complexity: first, isolated, singleuser facial expressions, then, twohand gestures and humantohuman interactions,...
Signed directed acyclic graphs for causal inference
, 2010
"... Summary. Formal rules governing signed edges on causal directed acyclic graphs are described and it is shown how these rules can be useful in reasoning about causality. Specifically, the notions of a monotonic effect, a weak monotonic effect and a signed edge are introduced. Results are developed re ..."
Abstract

Cited by 8 (5 self)
 Add to MetaCart
Summary. Formal rules governing signed edges on causal directed acyclic graphs are described and it is shown how these rules can be useful in reasoning about causality. Specifically, the notions of a monotonic effect, a weak monotonic effect and a signed edge are introduced. Results are developed relating these monotonic effects and signed edges to the sign of the causal effect of an intervention in the presence of intermediate variables. The incorporation of signed edges in the directed acyclic graph causal framework furthermore allows for the development of rules governing the relationship between monotonic effects and the sign of the covariance between two variables. It is shown that when certain assumptions about monotonic effects can be made then these results can be used to draw conclusions about the presence of causal effects even when data are missing on confounding variables.
On Undirected Representations of Bayesian Networks
 ACM SIGIR Workshop on Mathematical/Formal Models in Information Retrieval
, 2001
"... Empirical studies clearly demonstrate the effectiveness of the nested jointree (NJT) representation in probabilistic inference. A NJT is a traditional Markov network (MN) together with a possible local MN nested in each clique. These nested MNs can themselves contain other nested MNs in a recu ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
Empirical studies clearly demonstrate the effectiveness of the nested jointree (NJT) representation in probabilistic inference. A NJT is a traditional Markov network (MN) together with a possible local MN nested in each clique. These nested MNs can themselves contain other nested MNs in a recursive manner. However, the NJT representation is not necessarily a faithful representation of a given Bayesian network (BN).