Results 1  10
of
17
Number theory and elementary arithmetic
 Philosophia Mathematica
, 2003
"... Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show t ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context. 1
Foundational and mathematical uses of higher types
 REFLECTIONS ON THE FOUNDATIONS OF MATHEMATICS: ESSAY IN HONOR OF SOLOMON FEFERMAN
, 1999
"... In this paper we develop mathematically strong systems of analysis in higher types which, nevertheless, are prooftheoretically weak, i.e. conservative over elementary resp. primitive recursive arithmetic. These systems are based on noncollapsing hierarchies ( n WKL+ ; n WKL+ ) of principles ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
In this paper we develop mathematically strong systems of analysis in higher types which, nevertheless, are prooftheoretically weak, i.e. conservative over elementary resp. primitive recursive arithmetic. These systems are based on noncollapsing hierarchies ( n WKL+ ; n WKL+ ) of principles which generalize (and for n = 0 coincide with) the socalled `weak' König's lemma WKL (which has been studied extensively in the context of second order arithmetic) to logically more complex tree predicates. Whereas the second order context used in the program of reverse mathematics requires an encoding of higher analytical concepts like continuous functions F : X ! Y between Polish spaces X;Y , the more exible language of our systems allows to treat such objects directly. This is of relevance as the encoding of F used in reverse mathematics tacitly yields a constructively enriched notion of continuous functions which e.g. for F : IN ! IN can be seen (in our higher order context)
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
The Baire category theorem in weak subsystems of secondorder arithmetic
 THE JOURNAL OF SYMBOLIC LOGIC
, 1993
"... ..."
Is the Continuum Hypothesis a definite mathematical problem?
"... [t]he analysis of the phrase “how many ” unambiguously leads to a definite meaning for the question [“How many different sets of integers do their exist?”]: the problem is to find out which one of the א’s is the number of points of a straight line … Cantor, after having proved that this number is gr ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
[t]he analysis of the phrase “how many ” unambiguously leads to a definite meaning for the question [“How many different sets of integers do their exist?”]: the problem is to find out which one of the א’s is the number of points of a straight line … Cantor, after having proved that this number is greater than א0, conjectured that it is א1. An equivalent proposition is this: any infinite subset of the continuum has the power either of the set of integers or of the whole continuum. This is Cantor’s continuum hypothesis. … But, although Cantor’s set theory has now had a development of more than sixty years and the [continuum] problem is evidently of great importance for it, nothing has been proved so far relative to the question of what the power of the continuum is or whether its subsets satisfy the condition just stated, except that … it is true for a certain infinitesimal fraction of these subsets, [namely] the analytic sets. Not even an upper bound, however high, can be assigned for the power of the continuum. It is undecided whether this number is regular or singular, accessible or inaccessible, and (except for König’s negative result) what its character of cofinality is. Gödel 1947, 516517 [in Gödel 1990, 178]
A New Approach to Predicative Set Theory
"... We suggest a new basic framework for the WeylFeferman predicativist program by constructing a formal predicative set theory PZF which resembles ZF. The basic idea is that the predicatively acceptable instances of the comprehension schema are those which determine the collections they define in an a ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We suggest a new basic framework for the WeylFeferman predicativist program by constructing a formal predicative set theory PZF which resembles ZF. The basic idea is that the predicatively acceptable instances of the comprehension schema are those which determine the collections they define in an absolute way, independent of the extension of the “surrounding universe”. This idea is implemented using syntactic safety relations between formulas and sets of variables. These safety relations generalize both the notion of domainindependence from database theory, and Godel notion of absoluteness from set theory. The language of PZF is typefree, and it reflects real mathematical practice in making an extensive use of statically defined abstract set terms. Another important feature of PZF is that its underlying logic is ancestral logic (i.e. the extension of FOL with a transitive closure operation). 1
Paradoxes in Göttingen
"... In 1903 Russell’s paradox came over the mathematical world with a double stroke. Bertrand Russell himself published it under the heading “The Contradiction” in chapter 10 of his Principles of Mathematics (Russell 1903). Almost at the same time Gottlob Frege (1848–1925) referred to Russell’s ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In 1903 Russell’s paradox came over the mathematical world with a double stroke. Bertrand Russell himself published it under the heading “The Contradiction” in chapter 10 of his Principles of Mathematics (Russell 1903). Almost at the same time Gottlob Frege (1848–1925) referred to Russell’s
2008b) “How Weyl stumbled across electricity while pursuing mathematical justice” Studies in history and philosophy of modern physics, doi:10.1016/j.shpsb.2008.06.003
 Substantivalism and determinism” International studies in the philosophy of science 2, 1031
, 2005
"... It is argued that Weyl’s theory of gravitation and electricity came out of ‘mathematical justice’: out of the equal rights direction and length. Such mathematical justice was manifestly at work in the context of discovery, and is enough (together with a couple of simple and natural operations) to de ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
It is argued that Weyl’s theory of gravitation and electricity came out of ‘mathematical justice’: out of the equal rights direction and length. Such mathematical justice was manifestly at work in the context of discovery, and is enough (together with a couple of simple and natural operations) to derive all of sourcefree electromagnetism. Weyl’s repeated references to coordinates and gauge are taken to express equal treatment of direction and length. 1
Conceptions of the Continuum
"... Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question ..."
Abstract
 Add to MetaCart
Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question the idea from current set theory that the continuum is somehow a uniquely determined concept. Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions. 1. What is the continuum? On the face of it, there are several distinct forms of the continuum as a mathematical concept: in geometry, as a straight line, in analysis as the real number system (characterized in one of several ways), and in set theory as the power set of the natural numbers and, alternatively, as the set of all infinite sequences of zeros and ones. Since it is common to refer to the continuum, in what sense are these all instances of the same concept? When one speaks of the continuum in current settheoretical