Results 1  10
of
77
Modular verification of software components in C
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 2003
"... We present a new methodology for automatic verification of C programs against finite state machine specifications. Our approach is compositional, naturally enabling us to decompose the verification of large software systems into subproblems of manageable complexity. The decomposition reflects the mo ..."
Abstract

Cited by 205 (20 self)
 Add to MetaCart
We present a new methodology for automatic verification of C programs against finite state machine specifications. Our approach is compositional, naturally enabling us to decompose the verification of large software systems into subproblems of manageable complexity. The decomposition reflects the modularity in the software design. We use weak simulation as the notion of conformance between the program and its specification. Following the abstractverifyrefine paradigm, our tool MAGIC first extracts a finite model from C source code using predicate abstraction and theorem proving. Subsequently, simulation is checked via a reduction to Boolean satisfiability. MAGIC is able to interface with several publicly available theorem provers and SAT solvers. We report experimental results with procedures from the Linux kernel and the OpenSSL toolkit.
A Fast LinearArithmetic Solver for DPLL(T
, 2006
"... Abstract. We present a new Simplexbased linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient for ..."
Abstract

Cited by 183 (7 self)
 Add to MetaCart
Abstract. We present a new Simplexbased linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of theory propagation. We also present a new and simple approach for solving strict inequalities. Experimental results show substantial performance improvements over existing tools that use other Simplexbased solvers in DPLL(T) decision procedures. The new solver is even competitive with stateoftheart tools specialized for the difference logic fragment. 1
Software Verification with BLAST
, 2003
"... Introduction. Blast (the Berkeley Lazy Abstraction Software verification Tool) is a verification system for checking safety properties of C programs using automatic propertydriven construction and model checking of software abstractions. Blast implements an abstractmodel checkrefine loop to chec ..."
Abstract

Cited by 141 (2 self)
 Add to MetaCart
Introduction. Blast (the Berkeley Lazy Abstraction Software verification Tool) is a verification system for checking safety properties of C programs using automatic propertydriven construction and model checking of software abstractions. Blast implements an abstractmodel checkrefine loop to check for reachability of a specified label in the program. The abstract model is built on the fly using predicate abstraction. This model is then checked for reachability. If there is no (abstract) path to the specified error label, Blast reports that the system is safe and produces a succinct proof. Otherwise, it checks if the path is feasible using symbolic execution of the program. If the path is feasible, Blast outputs the path as an error trace, otherwise, it uses the infeasibility of the path to refine the abstract model. Blast shortcircuits the loop from abstraction to verification to refinement, integrating the three steps tightly through "lazy abstraction " [5]. This integration can o
A decision procedure for bitvectors and arrays
 In Computer Aided Verification, number 4590 in LNCS
, 2007
"... Abstract. STP is a decision procedure for the satisfiability of quantifierfree formulas in the theory of bitvectors and arrays that has been optimized for large problems encountered in software analysis applications. The basic architecture of the procedure consists of wordlevel preprocessing alg ..."
Abstract

Cited by 128 (7 self)
 Add to MetaCart
Abstract. STP is a decision procedure for the satisfiability of quantifierfree formulas in the theory of bitvectors and arrays that has been optimized for large problems encountered in software analysis applications. The basic architecture of the procedure consists of wordlevel preprocessing algorithms followed by translation to SAT. The primary bottlenecks in software verification and bug finding applications are large arrays and linear bitvector arithmetic. New algorithms based on the abstractionrefinement paradigm are presented for reasoning about large arrays. A solver for bitvector linear arithmetic is presented that eliminates variables and parts of variables to enable other transformations, and reduce the size of the problem that is eventually received by the SAT solver. These and other algorithms have been implemented in STP, which has been heavily tested over thousands of examples obtained from several realworld applications. Experimental results indicate that the above mix of algorithms along with the overall architecture is far more effective, for a variety of applications, than a direct translation of the original formula to SAT or other comparable decision procedures. 1
Generating Tests from Counterexamples
 In Proc. of the 26th ICSE
, 2004
"... We have extended the software model checker BLAST to automatically generate test suites that guarantee full coverage with respect to a given predicate. More precisely, given a C program and a target predicate p, BLAST determines the set L of program locations which program execution can reach with p ..."
Abstract

Cited by 78 (8 self)
 Add to MetaCart
We have extended the software model checker BLAST to automatically generate test suites that guarantee full coverage with respect to a given predicate. More precisely, given a C program and a target predicate p, BLAST determines the set L of program locations which program execution can reach with p true, and automatically generates a set of test vectors that exhibit the truth of p at all locations in L. We have used BLAST to generate test suites and to detect dead code in C programs with up to 30 K lines of code. The analysis and testvector generation is fully automatic (no user intervention) and exact (no false positives).
Lazy Satisfiability Modulo Theories
 Journal on Satisfiability, Boolean Modeling and Computation
, 2007
"... Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingl ..."
Abstract

Cited by 74 (32 self)
 Add to MetaCart
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingly important due to its applications in many domains in different communities, in particular in formal verification. An amount of papers with novel and very efficient techniques for SMT has been published in the last years, and some very efficient SMT tools are now available. Typical SMT (T) problems require testing the satisfiability of formulas which are Boolean combinations of atomic propositions and atomic expressions in T, so that heavy Boolean reasoning must be efficiently combined with expressive theoryspecific reasoning. The dominating approach to SMT (T), called lazy approach, is based on the integration of a SAT solver and of a decision procedure able to handle sets of atomic constraints in T (Tsolver), handling respectively the Boolean and the theoryspecific components of reasoning. Unfortunately, neither the problem of building an efficient SMT solver, nor even that of acquiring a comprehensive background knowledge in lazy SMT, is of simple solution. In this paper we present an extensive survey of SMT, with particular focus on the lazy approach. We survey, classify and analyze from a theoryindependent perspective the most effective techniques and optimizations which are of interest for lazy SMT and which have been proposed in various communities; we discuss their relative benefits and drawbacks; we provide some guidelines about their choice and usage; we also analyze the features for SAT solvers and Tsolvers which make them more suitable for an integration. The ultimate goals of this paper are to become a source of a common background knowledge and terminology for students and researchers in different areas, to provide a reference guide for developers of SMT tools, and to stimulate the crossfertilization of techniques and ideas among different communities.
CounterExample Based Predicate Discovery in Predicate Abstraction
 In Formal Methods in ComputerAided Design
, 2002
"... The application of predicate abstraction to parameterized systems requires the use of quantified predicates. These predicates cannot be found automatically by existing techniques and are tedious for the user to provide. In this work we demonstrate a method of discovering most of these predicates aut ..."
Abstract

Cited by 51 (2 self)
 Add to MetaCart
The application of predicate abstraction to parameterized systems requires the use of quantified predicates. These predicates cannot be found automatically by existing techniques and are tedious for the user to provide. In this work we demonstrate a method of discovering most of these predicates automatically by analyzing spurious abstract counterexample traces. Since predicate discovery for unbounded state systems is an undecidable problem, it can fail on some problems.
Dynamic test input generation for database applications
 In ISSTA
, 2007
"... We describe an algorithm for automatic test input generation for database applications. Given a program in an imperative language that interacts with a database through API calls, our algorithm generates both input data for the program as well as suitable database records to systematically explore a ..."
Abstract

Cited by 50 (1 self)
 Add to MetaCart
We describe an algorithm for automatic test input generation for database applications. Given a program in an imperative language that interacts with a database through API calls, our algorithm generates both input data for the program as well as suitable database records to systematically explore all paths of the program, including those paths whose execution depend on data returned by database queries. Our algorithm is based on concolic execution, where the program is run with concrete inputs and simultaneously also with symbolic inputs for both program variables as well as the database state. The symbolic constraints generated along a path enable us to derive new input values and new database records that can cause execution to hit uncovered paths. Simultaneously, the concrete execution helps to retain precision in the symbolic computations by allowing dynamic values to be used in the symbolic executor. This allows our algorithm, for example, to identify concrete SQL queries made by the program, even if these queries are built dynamically. The contributions of this paper are the following. We develop an algorithm that can track symbolic constraints across language boundaries and use those constraints in conjunction with a novel constraint solver to generate both program inputs and database state. We propose a constraint solver that can solve symbolic constraints consisting of both linear arithmetic constraints over variables as well as string constraints (string equality, disequality, as well as membership in regular languages). Finally, we provide an evaluation of the algorithm on a Java implementation of MediaWiki, a popular wiki package that interacts with a database backend.
The UCLID Decision Procedure
 In CAV’04
, 2004
"... UCLID is a tool for termlevel modeling and verification of infinitestate systems expressible in the logic of counter arithmetic with lambda expressions and uninterpreted functions (CLU). In this paper, we describe a key component of the tool, the decision procedure for CLU. ..."
Abstract

Cited by 39 (1 self)
 Add to MetaCart
UCLID is a tool for termlevel modeling and verification of infinitestate systems expressible in the logic of counter arithmetic with lambda expressions and uninterpreted functions (CLU). In this paper, we describe a key component of the tool, the decision procedure for CLU.
Cogent: Accurate theorem proving for program verification
 Proceedings of CAV 2005, volume 3576 of Lecture Notes in Computer Science
, 2005
"... Abstract. Many symbolic software verification engines such as Slam and ESC/Java rely on automatic theorem provers. The existing theorem provers, such as Simplify, lack precise support for important programming language constructs such as pointers, structures and unions. This paper describes a theore ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Abstract. Many symbolic software verification engines such as Slam and ESC/Java rely on automatic theorem provers. The existing theorem provers, such as Simplify, lack precise support for important programming language constructs such as pointers, structures and unions. This paper describes a theorem prover, Cogent, that accurately supports all ANSIC expressions. The prover’s implementation is based on a machinelevel interpretation of expressions into propositional logic, and supports finite machinelevel variables, bit operations, structures, unions, references, pointers and pointer arithmetic. When used by Slam during the model checking of over 300 benchmarks, Cogent’s improved accuracy reduced the number of Slam timeouts by half, increased the number of true errors found, and decreased the number of false errors. 1