Results 1 
2 of
2
Recognition Using Region Correspondences
 International Journal of Computer Vision
, 1995
"... A central problem in object recognition is to determine the transformation that relates the model to the image, given some partial correspondence between the two. This is useful in determining whether an object is present in an image, and if so, determining where the object is. We present a novel me ..."
Abstract

Cited by 34 (7 self)
 Add to MetaCart
A central problem in object recognition is to determine the transformation that relates the model to the image, given some partial correspondence between the two. This is useful in determining whether an object is present in an image, and if so, determining where the object is. We present a novel method of solving this problem that uses region information. In our approach the model is divided into volumes, and the image is divided into regions. Given a match between subsets of volumes and regions (without any explicit correspondence between different pieces of the regions) the alignment transformation is computed. The method applies to planar objects under similarity, affine, and projective transformations and to projections of 3D objects undergoing affine and projective transformations. 1 Introduction A fundamental problem in recognition is pose estimation. Given a correspondence between some portions of an object model and some portions of an image, determine the transformation th...
When Is It Possible to Identify 3D Objects from Single Images Using Class Constraints?
 J. of Comp. Vision
, 1999
"... One approach to recognizing objects seen from arbitrary viewpoint is by extracting invariant properties of the objects from single images. Such properties are found in images of 3D objects only when the objects are constrained to belong to certain classes (e.g., bilaterally symmetric objects). Exist ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
One approach to recognizing objects seen from arbitrary viewpoint is by extracting invariant properties of the objects from single images. Such properties are found in images of 3D objects only when the objects are constrained to belong to certain classes (e.g., bilaterally symmetric objects). Existing studies that follow this approach propose how to compute invariant representations for a handful of classes of objects. A fundamental question regarding the invariance approach is whether it can be applied to a wide range of classes. To answer this question it is essential to study the set of classes for which invariance exists. This paper introduces a new method for determining the existence of invariance for classes of objects together with the set of images from which these invariance can be computed. We develop algebraic tests that, given a class of objects undergoing affine projection, determine whether the objects in the class can be identified from single images. In addition, thes...