Results 1  10
of
362
The "Independent Components" of Natural Scenes are Edge Filters
, 1997
"... It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attem ..."
Abstract

Cited by 617 (29 self)
 Add to MetaCart
It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attempts to find a factorial code of independent visual features. We show here that a new unsupervised learning algorithm based on information maximization, a nonlinear "infomax" network, when applied to an ensemble of natural scenes produces sets of visual filters that are localized and oriented. Some of these filters are Gaborlike and resemble those produced by the sparsenessmaximization network. In addition, the outputs of these filters are as independent as possible, since this infomax network performs Independent Components Analysis or ICA, for sparse (supergaussian) component distributions. We compare the resulting ICA filters and their associated basis functions, with other decorrelating filters produced by Principal Components Analysis (PCA) and zerophase whitening filters (ZCA). The ICA filters have more sparsely distributed (kurtotic) outputs on natural scenes. They also resemble the receptive fields of simple cells in visual cortex, which suggests that these neurons form a natural, informationtheoretic
Forward models: Supervised learning with a distal teacher
 Cognitive Science
, 1992
"... Internal models of the environment have an important role to play in adaptive systems in general and are of particular importance for the supervised learning paradigm. In this paper we demonstrate that certain classical problems associated with the notion of the \teacher " in supervised lea ..."
Abstract

Cited by 421 (9 self)
 Add to MetaCart
Internal models of the environment have an important role to play in adaptive systems in general and are of particular importance for the supervised learning paradigm. In this paper we demonstrate that certain classical problems associated with the notion of the \teacher &quot; in supervised learning can be solved by judicious use of learned internal models as components of the adaptive system. In particular, we show how supervised learning algorithms can be utilized in cases in which an unknown dynamical system intervenes between actions and desired outcomes. Our approach applies to any supervised learning algorithm that is capable of learning in multilayer networks.
Learning Overcomplete Representations
, 2000
"... In an overcomplete basis, the number of basis vectors is greater than the dimensionality of the input, and the representation of an input is not a unique combination of basis vectors. Overcomplete representations have been advocated because they have greater robustness in the presence of noise, can ..."
Abstract

Cited by 354 (10 self)
 Add to MetaCart
(Show Context)
In an overcomplete basis, the number of basis vectors is greater than the dimensionality of the input, and the representation of an input is not a unique combination of basis vectors. Overcomplete representations have been advocated because they have greater robustness in the presence of noise, can be sparser, and can have greater flexibility in matching structure in the data. Overcomplete codes have also been proposed as a model of some of the response properties of neurons in primary visual cortex. Previous work has focused on finding the best representation of a signal using a fixed overcomplete basis (or dictionary). We present an algorithm for learning an overcomplete basis by viewing it as probabilistic model of the observed data. We show that overcomplete bases can yield a better approximation of the underlying statistical distribution of the data and can thus lead to greater coding efficiency. This can be viewed as a generalization of the technique of independent component analysis and provides a method for Bayesian reconstruction of signals in the presence of noise and for blind source separation when there are more sources than mixtures.
Probabilistic Independent Component Analysis
, 2003
"... Independent Component Analysis is becoming a popular exploratory method for analysing complex data such as that from FMRI experiments. The application of such 'modelfree' methods, however, has been somewhat restricted both by the view that results can be uninterpretable and by the lack of ..."
Abstract

Cited by 208 (13 self)
 Add to MetaCart
(Show Context)
Independent Component Analysis is becoming a popular exploratory method for analysing complex data such as that from FMRI experiments. The application of such 'modelfree' methods, however, has been somewhat restricted both by the view that results can be uninterpretable and by the lack of ability to quantify statistical significance. We present an integrated approach to Probabilistic ICA for FMRI data that allows for nonsquare mixing in the presence of Gaussian noise. We employ an objective estimation of the amount of Gaussian noise through Bayesian analysis of the true dimensionality of the data, i.e. the number of activation and nonGaussian noise sources. Reduction of the data to this 'true' subspace before the ICA decomposition automatically results in an estimate of the noise, leading to the ability to assign significance to voxels in ICA spatial maps. Estimation of the number of intrinsic sources not only enables us to carry out probabilistic modelling, but also achieves an asymptotically unique decomposition of the data. This reduces problems of interpretation, as each final independent component is now much more likely to be due to only one physical or physiological process. We also describe other improvements to standard ICA, such as temporal prewhitening and variance normafisation of timeseries, the latter being particularly useful in the context of dimensionality reduction when weak activation is present. We discuss the use of prior information about the spatiotemporal nature of the source processes, and an alternativehypothesis testing approach for inference, using Gaussian mixture models. The performance of our approach is illustrated and evaluated on real and complex artificial FMRI data, and compared to the spatiotemporal accuracy of restfits obtaine...
Non Linear Neurons in the Low Noise Limit: A Factorial Code Maximizes Information Transfer
, 1994
"... We investigate the consequences of maximizing information transfer in a simple neural network (one input layer, one output layer), focussing on the case of non linear transfer functions. We assume that both receptive fields (synaptic efficacies) and transfer functions can be adapted to the environm ..."
Abstract

Cited by 162 (18 self)
 Add to MetaCart
We investigate the consequences of maximizing information transfer in a simple neural network (one input layer, one output layer), focussing on the case of non linear transfer functions. We assume that both receptive fields (synaptic efficacies) and transfer functions can be adapted to the environment. The main result is that, for bounded and invertible transfer functions, in the case of a vanishing additive output noise, and no input noise, maximization of information (Linsker'sinfomax principle) leads to a factorial code  hence to the same solution as required by the redundancy reduction principle of Barlow. We show also that this result is valid for linear, more generally unbounded, transfer functions, provided optimization is performed under an additive constraint, that is which can be written as a sum of terms, each one being specific to one output neuron. Finally we study the effect of a non zero input noise. We find that, at first order in the input noise, assumed to be small ...
Adaptive Filters
"... Introduction An adaptive filter is defined as a selfdesigning system that relies for its operation on a recursive algorithm, which makes it possible for the filter to perform satisfactorily in an environment where knowledge of the relevant statistics is not available. Adaptive filters are classif ..."
Abstract

Cited by 140 (2 self)
 Add to MetaCart
Introduction An adaptive filter is defined as a selfdesigning system that relies for its operation on a recursive algorithm, which makes it possible for the filter to perform satisfactorily in an environment where knowledge of the relevant statistics is not available. Adaptive filters are classified into two main groups: linear, and non linear. Linear adaptive filters compute an estimate of a desired response by using a linear combination of the available set of observables applied to the input of the filter. Otherwise, the adaptive filter is said to be nonlinear. Adaptive filters may also be classified into: (i) Supervised adaptive filters, which require the availability of a training sequence that provides different realizations of a desired response for a specified input signal vector. The desired response is compared against the actual response of the filter due to the input signal vector, and the resulting error signal is
Probabilistic framework for the adaptation and comparison of image codes
 J. OPT. SOC. AM. A
, 1999
"... We apply a Bayesian method for inferring an optimal basis to the problem of finding efficient image codes for natural scenes. The basis functions learned by the algorithm are oriented and localized in both space and frequency, bearing a resemblance to twodimensional Gabor functions, and increasing ..."
Abstract

Cited by 140 (10 self)
 Add to MetaCart
We apply a Bayesian method for inferring an optimal basis to the problem of finding efficient image codes for natural scenes. The basis functions learned by the algorithm are oriented and localized in both space and frequency, bearing a resemblance to twodimensional Gabor functions, and increasing the number of basis functions results in a greater sampling density in position, orientation, and scale. These properties also resemble the spatial receptive fields of neurons in the primary visual cortex of mammals, suggesting that the receptivefield structure of these neurons can be accounted for by a general efficient coding principle. The probabilistic framework provides a method for comparing the coding efficiency of different bases objectively by calculating their probability given the observed data or by measuring the entropy of the basis function coefficients. The learned bases are shown to have better coding efficiency than traditional Fourier and wavelet bases. This framework also provides a Bayesian solution to the problems of image denoising and filling in of missing pixels. We demonstrate that the results obtained by applying the learned bases to these problems are improved over those obtained with traditional techniques.
Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex
 Neural Computation
, 1995
"... this paper, we describe a hierarchical network model of visual recognition that explains these experimental observations by using a form of the extended Kalman filter as given by the Minimum Description Length (MDL) principle. The model dynamically combines inputdriven bottomup signals with expec ..."
Abstract

Cited by 113 (20 self)
 Add to MetaCart
this paper, we describe a hierarchical network model of visual recognition that explains these experimental observations by using a form of the extended Kalman filter as given by the Minimum Description Length (MDL) principle. The model dynamically combines inputdriven bottomup signals with expectationdriven topdown signals to predict current recognition state. Synaptic weights in the model are adapted in a Hebbian manner according to a learning rule also derived from the MDL principle. The resulting prediction/learning scheme can be viewed as implementing a form of the ExpectationMaximization (EM) algorithm. The architecture of the model posits an active computational role for the reciprocal connections between adjoining visual cortical areas in determining neural response properties. In particular, the model demonstrates the possible role of feedback from higher cortical areas in mediating neurophysiological effects due to stimuli from beyond the classical receptive field. Si
A TwoLayer Sparse Coding Model Learns Simple and Complex Cell Receptive Fields and Topography From Natural Images
 VISION RESEARCH
, 2001
"... The classical receptive fields of simple cells in the visual cortex have been shown to emerge from the statistical properties of natural images by forcing the cell responses to be maximally sparse, i.e. significantly activated only rarely. Here, we show that this single principle of sparseness can ..."
Abstract

Cited by 110 (16 self)
 Add to MetaCart
The classical receptive fields of simple cells in the visual cortex have been shown to emerge from the statistical properties of natural images by forcing the cell responses to be maximally sparse, i.e. significantly activated only rarely. Here, we show that this single principle of sparseness can also lead to emergence of topography (columnar organization) and complex cell properties as well. These are obtained by maximizing the sparsenesses of locally pooled energies, which correspond to complex cell outputs. Thus we obtain a highly parsimonious model of how these properties of the visual cortex are adapted to the characteristics of the natural input.
Natural image statistics and efficient coding
, 1996
"... Natural images contain characteristic statistical regularities that set them apart from purely random images. Understanding what these regularities are can enable natural images to be coded more efficiently. In this paper, we describe some of the forms of structure that are contained in natural imag ..."
Abstract

Cited by 108 (1 self)
 Add to MetaCart
(Show Context)
Natural images contain characteristic statistical regularities that set them apart from purely random images. Understanding what these regularities are can enable natural images to be coded more efficiently. In this paper, we describe some of the forms of structure that are contained in natural images, and we show how these are related to the response properties of neurons at early stages of the visual system. Many of the important forms of structure require higherorder (i.e. more than linear, pairwise) statistics to characterize, which makes models based on linear Hebbian learning, or principal components analysis, inappropriate for finding efficient codes for natural images. We suggest that a good objective for an efficient coding of natural scenes is to maximize the sparseness of the representation, and we show that a network that learns sparse codes of natural scenes succeeds in developing localized, oriented, bandpass receptive fields similar to those in the mammalian striate cortex.