Results 1  10
of
317
Deformable models in medical image analysis: A survey
 Medical Image Analysis
, 1996
"... This article surveys deformable models, a promising and vigorously researched computerassisted medical image analysis technique. Among modelbased techniques, deformable models offer a unique and powerful approach to image analysis that combines geometry, physics, and approximation theory. They hav ..."
Abstract

Cited by 591 (7 self)
 Add to MetaCart
(Show Context)
This article surveys deformable models, a promising and vigorously researched computerassisted medical image analysis technique. Among modelbased techniques, deformable models offer a unique and powerful approach to image analysis that combines geometry, physics, and approximation theory. They have proven to be effective in segmenting, matching, and tracking anatomic structures by exploiting (bottomup) constraints derived from the image data together with (topdown) a priori knowledge about the location, size, and shape of these structures. Deformable models are capable of accommodating the significant variability of biological structures over time and across different individuals. Furthermore, they support highly intuitive interaction mechanisms that, when necessary, allow medical scientists and practitioners to bring their expertise to bear on the modelbased image interpretation task. This article reviews the rapidly expanding body of work on the development and application of deformable models to problems of fundamental importance in medical image analysis, includingsegmentation, shape representation, matching, and motion tracking.
Statistical shape influence in geodesic active contours
 In Proc. 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Hilton Head, SC
, 2000
"... A novel method of incorporating shape information into the image segmentation process is presented. We introduce a representation for deformable shapes and define a probability distribution over the variances of a set of training shapes. The segmentation process embeds an initial curve as the zero l ..."
Abstract

Cited by 394 (4 self)
 Add to MetaCart
(Show Context)
A novel method of incorporating shape information into the image segmentation process is presented. We introduce a representation for deformable shapes and define a probability distribution over the variances of a set of training shapes. The segmentation process embeds an initial curve as the zero level set of a higher dimensional surface, and evolves the surface such that the zero level set converges on the boundary of the object to be segmented. At each step of the surface evolution, we estimate the maximum a posteriori (MAP) position and shape of the object in the image, based on the prior shape information and the image information. We then evolve the surface globally, towards the MAP estimate, and locally, based on image gradients and curvature. Results are demonstrated on synthetic data and medical imagery, in 2D and 3D. 1
A levelset approach to 3d reconstruction from range data
 International Journal of Computer Vision
, 1998
"... This paper presents a method that uses the level sets of volumes to reconstruct the shapes of 3D objects from range data. The strategy is to formulate 3D reconstruction as a statistical problem: find that surface which is mostly likely, given the data and some prior knowledge about the application d ..."
Abstract

Cited by 195 (24 self)
 Add to MetaCart
(Show Context)
This paper presents a method that uses the level sets of volumes to reconstruct the shapes of 3D objects from range data. The strategy is to formulate 3D reconstruction as a statistical problem: find that surface which is mostly likely, given the data and some prior knowledge about the application domain. The resulting optimization problem is solved by an incremental process of deformation. We represent a deformable surface as the level set of a discretely sampled scalar function of 3 dimensions, i.e. a volume. Such levelset models have been shown to mimic conventional deformable surface models by encoding surface movements as changes in the greyscale values of the volume. The result is a voxelbased modeling technology that offers several advantages over conventional parametric models, including flexible topology, no need for reparameterization, concise descriptions of differential structure, and a natural scale space for hierarchical representations. This paper builds on previous work in both 3D reconstruction and levelset modeling. It presents a fundamental result in surface estimation from range data: an analytical characterization of the surface that maximizes the posterior probability. It also presents a novel computational technique for levelset modeling, called the sparsefield algorithm, which combines the advantages of a levelset approach with the computational efficiency and accuracy of a parametric representation. The sparsefield algorithm is more efficient than other approaches, and because it assigns the level set to a specific set of grid points, it positions the levelset model more accurately than the grid itself. These properties, computational efficiency and subcell accuracy, are essential when trying to reconstruct the shapes of 3D objects. Results are shown for the reconstruction objects from sets of noisy and overlapping range maps.
Elastic modelbased segmentation of 3d neuroradiological data sets
 IEEE Trans. Medical Imaging
, 1999
"... Abstract — This paper presents a new technique for the automatic modelbased segmentation of threedimensional (3D) objects from volumetric image data. The development closely follows the seminal work of Taylor and Cootes on active shape models, but is based on a hierarchical parametric object desc ..."
Abstract

Cited by 176 (24 self)
 Add to MetaCart
(Show Context)
Abstract — This paper presents a new technique for the automatic modelbased segmentation of threedimensional (3D) objects from volumetric image data. The development closely follows the seminal work of Taylor and Cootes on active shape models, but is based on a hierarchical parametric object description rather than a point distribution model. The segmentation system includes both the building of statistical models and the automatic segmentation of new image data sets via a restricted elastic deformation of shape models. Geometric models are derived from a sample set of image data which have been segmented by experts. The surfaces of these binary objects are converted into parametric surface representations, which are normalized to get an invariant objectcentered coordinate system. Surface representations are expanded into series of spherical harmonics which provide parametric descriptions of object shapes. It is
A shapebased approach to the segmentation of medical imagery using level sets
 IEEE Trans. Med. Imag
, 2003
"... Abstract—We propose a shapebased approach to curve evolution for the segmentation of medical images containing known object types. In particular, motivated by the work of Leventon, Grimson, and Faugeras [15], we derive a parametric model for an implicit representation of the segmenting curve by app ..."
Abstract

Cited by 166 (11 self)
 Add to MetaCart
(Show Context)
Abstract—We propose a shapebased approach to curve evolution for the segmentation of medical images containing known object types. In particular, motivated by the work of Leventon, Grimson, and Faugeras [15], we derive a parametric model for an implicit representation of the segmenting curve by applying principal component analysis to a collection of signed distance representations of the training data. The parameters of this representation are then manipulated to minimize an objective function for segmentation. The resulting algorithm is able to handle multidimensional data, can deal with topological changes of the curve, is robust to noise and initial contour placements, and is computationally efficient. At the same time, it avoids the need for point correspondences during the training phase of the algorithm. We demonstrate this technique by applying it to two medical applications; twodimensional segmentation of cardiac magnetic resonance imaging (MRI) and threedimensional segmentation of prostate MRI. Index Terms—Active contours, binary image alignment, cardiac MRI segmentation, curve evolution, deformable model, distance transforms, eigenshapes, implicit shape representation, medical image segmentation, parametric shape model, principal component analysis, prostate segmentation, shape prior, statistical shape model. I.
Segmentation, registration, and measurement of shape variation via image object shape
 IEEE Transactions on Medical Imaging
, 1999
"... A model of object shape by nets of medial and boundary primitives is justified as richly capturing multiple aspects of shape and yet requiring representation space and image analysis work proportional to the number of primitives. Metrics are described that compute an object representation's pri ..."
Abstract

Cited by 148 (24 self)
 Add to MetaCart
A model of object shape by nets of medial and boundary primitives is justified as richly capturing multiple aspects of shape and yet requiring representation space and image analysis work proportional to the number of primitives. Metrics are described that compute an object representation's prior probability of local geometry by reflecting variabilities in the net's node and link parameter values and that compute a likelihood function measuring the degree of match of an image to that object representation. A paradigm for image analysis of deforming such a model to optimize a posterior probability is described, and this paradigm is shown to be usable as a uniform approach for object definition, objectbased registration between images of the same or different imaging modalities, and measurement of shape variation of an abnormal anatomical object compared with a normal. Examples of applications of these methods in radiotherapy, surgery, and psychiatry are given.
Statistical Models of Appearance for Medical Image Analysis and Computer Vision
 In Proc. SPIE Medical Imaging
, 2001
"... Statistical models of shape and appearance are powerful tools for interpreting medical images. We assume a training set of images in which corresponding `landmark' points have been marked on every image. From this data we can compute a statistical model of the shape variation, a model of the te ..."
Abstract

Cited by 114 (1 self)
 Add to MetaCart
Statistical models of shape and appearance are powerful tools for interpreting medical images. We assume a training set of images in which corresponding `landmark' points have been marked on every image. From this data we can compute a statistical model of the shape variation, a model of the texture variation and a model of the correlations between shape and texture. With enough training examples such models should be able to synthesize any image of normal anatomy. By finding the parameters which optimize the match between a synthesized model image and a target image we can locate all the structures represented by the model. Two approaches to the matching will be described. The Active Shape Model essentially matches a model to boundaries in an image. The Active Appearance Model finds model parameters which synthesize a complete image which is as similar as possible to the target image. By using a `difference decomposition' approach the current difference between target image and synthesi...
Using prior shapes in geometric active contours in a variational framework
 IJCV
, 2002
"... Abstract. In this paper, we report an active contour algorithm that is capable of using prior shapes. The energy functional of the contour is modified so that the energy depends on the image gradient as well as the prior shape. The model provides the segmentation and the transformation that maps the ..."
Abstract

Cited by 112 (3 self)
 Add to MetaCart
Abstract. In this paper, we report an active contour algorithm that is capable of using prior shapes. The energy functional of the contour is modified so that the energy depends on the image gradient as well as the prior shape. The model provides the segmentation and the transformation that maps the segmented contour to the prior shape. The active contour is able to find boundaries that are similar in shape to the prior, even when the entire boundary is not visible in the image (i.e., when the boundary has gaps). A level set formulation of the active contour is presented. The existence of the solution to the energy minimization is also established. We also report experimental results of the use of this contour on 2d synthetic images, ultrasound images and fMRI images. Classical active contours cannot be used in many of these images.
Rapid Automated Tracing and Feature Extraction from Retinal Fundus Images Using Direct Exploratory Algorithms
 IEEE Trans. Inform. Technol. Biomed
, 1999
"... Algorithms are presented for rapid, automatic, robust, adaptive, and accurate tracing of retinal vasculature and analysis of intersections and crossovers. This method improves upon prior work in several ways: 1) automatic adaptation from frame to frame without manual initialization/adjustment, with ..."
Abstract

Cited by 107 (20 self)
 Add to MetaCart
Algorithms are presented for rapid, automatic, robust, adaptive, and accurate tracing of retinal vasculature and analysis of intersections and crossovers. This method improves upon prior work in several ways: 1) automatic adaptation from frame to frame without manual initialization/adjustment, with few tunable parameters; 2) robust operation on image sequences exhibiting natural variability, poor and varying imaging conditions, including over/underexposure, low contrast, and artifacts such as glare; 3) does not require the vasculature to be connected, so it can handle partial views; and 4) operation is efficient enough for use on unspecialized hardware, and amenable to deadlinedriven computing, being able to produce a rapidly and monotonically improving sequence of usable partial results. Increased computation can be traded for superior tracing performance. Its efficiency comes from direct processing on graylevel data without any preprocessing, and from processing only a minimally necessary fraction of pixels in an exploratory manner, avoiding lowlevel imagewide operations such as thresholding, edge detection, and morphological processing. These properties make the algorithm suited to realtime, online (live) processing and is being applied to computerassisted laser retinal surgery.