Results 1  10
of
59
Computationally feasible VCG mechanisms
 In Proceedings of the Second ACM Conference on Electronic Commerce (EC’00
, 2000
"... A major achievement of mechanism design theory is a general method for the construction of truthful mechanisms called VCG. When applying this method to complex problems such as combinatorial auctions, a difficulty arises: VCG mechanisms are required to compute optimal outcomes and are therefore comp ..."
Abstract

Cited by 188 (5 self)
 Add to MetaCart
A major achievement of mechanism design theory is a general method for the construction of truthful mechanisms called VCG. When applying this method to complex problems such as combinatorial auctions, a difficulty arises: VCG mechanisms are required to compute optimal outcomes and are therefore computationally infeasible. However, if the optimal outcome is replaced by the results of a suboptimal algorithm, the resulting mechanism (termed VCGbased) is no longer necessarily truthful. The first part of this paper studies this phenomenon in depth and shows that it is near universal. Specifically, we prove that essentially all reasonable approximations or heuristics for combinatorial auctions as well as a wide class of cost minimization problems yield nontruthful VCGbased mechanisms. We generalize these results for affine maximizers. The second part of this paper proposes a general method for circumventing the above problem. We introduce a modification of VCGbased mechanisms in which the agents are given a chance to improve the output of the underlying algorithm. When the agents behave truthfully, the welfare obtained by the mechanism is at least as good as the one obtained by the algorithm’s output. We provide a strong rationale for truthtelling behavior. Our method satisfies individual rationality as well.
Truth revelation in approximately efficient combinatorial auctions
 Journal of the ACM
, 2002
"... Abstract. Some important classical mechanisms considered in Microeconomics and Game Theory require the solution of a difficult optimization problem. This is true of mechanisms for combinatorial auctions, which have in recent years assumed practical importance, and in particular of the gold standard ..."
Abstract

Cited by 182 (1 self)
 Add to MetaCart
Abstract. Some important classical mechanisms considered in Microeconomics and Game Theory require the solution of a difficult optimization problem. This is true of mechanisms for combinatorial auctions, which have in recent years assumed practical importance, and in particular of the gold standard for combinatorial auctions, the Generalized Vickrey Auction (GVA). Traditional analysis of these mechanisms—in particular, their truth revelation properties—assumes that the optimization problems are solved precisely. In reality, these optimization problems can usually be solved only in an approximate fashion. We investigate the impact on such mechanisms of replacing exact solutions by approximate ones. Specifically, we look at a particular greedy optimization method. We show that the GVA payment scheme does not provide for a truth revealing mechanism. We introduce another scheme that does guarantee truthfulness for a restricted class of players. We demonstrate the latter property by identifying natural properties for combinatorial auctions and showing that, for our restricted class of players, they imply that truthful strategies are dominant. Those properties have applicability beyond the specific auction studied.
Approximation algorithms for combinatorial auctions with complementfree bidders
 In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC
, 2005
"... We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items m and in the number of bidders n, even though the “input size ” is exponential in m. The first algori ..."
Abstract

Cited by 94 (22 self)
 Add to MetaCart
We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items m and in the number of bidders n, even though the “input size ” is exponential in m. The first algorithm provides an O(log m) approximation. The second algorithm provides an O ( √ m) approximation in the weaker model of value oracles. This algorithm is also incentive compatible. The third algorithm provides an improved 2approximation for the more restricted case of “XOS bidders”, a class which strictly contains submodular bidders. We also prove lower bounds on the possible approximations achievable for these classes of bidders. These bounds are not tight and we leave the gaps as open problems. 1
Truthful and NearOptimal Mechanism Design via Linear Programming
, 2005
"... We give a general technique to obtain approximation mechanisms that are truthful in expectation.We show that for packing domains, any ffapproximation algorithm that also bounds the integrality gap of the LP relaxation of the problem by ff can be used to construct an ffapproximation mechanism that ..."
Abstract

Cited by 87 (11 self)
 Add to MetaCart
We give a general technique to obtain approximation mechanisms that are truthful in expectation.We show that for packing domains, any ffapproximation algorithm that also bounds the integrality gap of the LP relaxation of the problem by ff can be used to construct an ffapproximation mechanism that is truthful in expectation. This immediately yields a variety of new and significantly improved results for various problem domains and furthermore, yields truthful (in expectation) mechanisms with guarantees that match the best known approximation guarantees when truthfulness is not required. In particular, we obtain the first truthful mechanisms with approximation guarantees for a variety of multiparameter domains. We obtain truthful (in expectation) mechanisms achieving approximation guarantees of O( p m) for combinatorial auctions (CAs), (1 + ffl) for multiunit CAs with B = \Omega (log m) copies ofeach item, and 2 for multiparameter knapsack problems (multiunit auctions). Our construction is based on considering an LP relaxation of the problem and using the classic VCG [25, 9, 12] mechanism to obtain a truthful mechanism in this fractional domain. We argue that the (fractional) optimal solution scaled down by ff, where ff is the integrality gap of the problem, can be represented as a convex combination of integer solutions, and by viewing this convex combination as specifying a probability distribution over integer solutions, we get a randomized, truthful in expectation mechanism. Our construction can be seen as a way of exploiting VCG in a computational tractable way even when the underlying socialwelfare maximization problem is NPhard.
Truthful randomized mechanisms for combinatorial auctions
 IN STOC
, 2006
"... We design two computationallyefficient incentivecompatible mechanisms for combinatorial auctions with general bidder preferences. Both mechanisms are randomized, and are incentivecompatible in the universal sense. This is in contrast to recent previous work that only addresses the weaker notion o ..."
Abstract

Cited by 82 (15 self)
 Add to MetaCart
We design two computationallyefficient incentivecompatible mechanisms for combinatorial auctions with general bidder preferences. Both mechanisms are randomized, and are incentivecompatible in the universal sense. This is in contrast to recent previous work that only addresses the weaker notion of incentive compatibility in expectation. The first mechanism obtains an O(pm)approximation of the optimal social welfare for arbitrary bidder valuations  this is the best approximation possible in polynomial time. The second one obtains an O(log2 m) approximation for a subclass of bidder valuations that includes all submodular bidders. This improves over the best previously obtained incentivecompatible mechanism for this class which only provides an O(pm)approximation.
Approximation techniques for utilitarian mechanism design
 IN PROC. 36TH ACM SYMP. ON THEORY OF COMPUTING
, 2005
"... This paper deals with the design of efficiently computable incentive compatible, or truthful, mechanisms for combinatorial optimization problems with multiparameter agents. We focus on approximation algorithms for NPhard mechanism design problems. These algorithms need to satisfy certain monotonic ..."
Abstract

Cited by 64 (3 self)
 Add to MetaCart
This paper deals with the design of efficiently computable incentive compatible, or truthful, mechanisms for combinatorial optimization problems with multiparameter agents. We focus on approximation algorithms for NPhard mechanism design problems. These algorithms need to satisfy certain monotonicity properties to ensure truthfulness. Since most of the known approximation techniques do not fulfill these properties, we study alternative techniques. Our first contribution is a quite general method to transform a pseudopolynomial algorithm into a monotone FPTAS. This can be applied to various problems like, e.g., knapsack, constrained shortest path, or job scheduling with deadlines. For example, the monotone FPTAS for the knapsack problem gives a very efficient, truthful mechanism for singleminded multiunit auctions. The best previous result for such auctions was a 2approximation. In addition,
Weak monotonicity suffices for truthfulness on convex domains
 In Proceedings 6th ACM Conference on Electronic Commerce (EC
, 2005
"... Weak monotonicity is a simple necessary condition for a social choice function to be implementable by a truthful mechanism. Roberts [10] showed that it is sufficient for all social choice functions whose domain is unrestricted. Lavi, Mu’alem and Nisan [6] proved the sufficiency of weak monotonicity ..."
Abstract

Cited by 52 (0 self)
 Add to MetaCart
Weak monotonicity is a simple necessary condition for a social choice function to be implementable by a truthful mechanism. Roberts [10] showed that it is sufficient for all social choice functions whose domain is unrestricted. Lavi, Mu’alem and Nisan [6] proved the sufficiency of weak monotonicity for functions over orderbased domains and Gui, Muller and Vohra [5] proved sufficiency for orderbased domains with range constraints and for other special types of linear inequality constraints on the domain. Here we generalize these results by showing that weak monotonicity is sufficient for functions defined on any convex domain. 1
On the Hardness of Being Truthful
 In 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS
, 2008
"... The central problem in computational mechanism design is the tension between incentive compatibility and computational ef ciency. We establish the rst significant approximability gap between algorithms that are both truthful and computationallyef cient, and algorithms that only achieve one of these ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
The central problem in computational mechanism design is the tension between incentive compatibility and computational ef ciency. We establish the rst significant approximability gap between algorithms that are both truthful and computationallyef cient, and algorithms that only achieve one of these two desiderata. This is shown in the context of a novel mechanism design problem which we call the COMBINATORIAL PUBLIC PROJECT PROBLEM (CPPP). CPPP is an abstraction of many common mechanism design situations, ranging from elections of kibbutz committees to network design. Our result is actually made up of two complementary results – one in the communicationcomplexity model and one in the computationalcomplexity model. Both these hardness results heavily rely on a combinatorial characterization of truthful algorithms for our problem. Our computationalcomplexity result is one of the rst impossibility results connecting mechanism design to complexity theory; its novel proof technique involves an application of the SauerShelah Lemma and may be of wider applicability, both within and without mechanism design. 1
Inapproximability results for combinatorial auctions with submodular utility functions
 in Proceedings of WINE 2005
, 2005
"... We consider the following allocation problem arising in the setting of combinatorial auctions: a set of goods is to be allocated to a set of players so as to maximize the sum of the utilities of the players (i.e., the social welfare). In the case when the utility of each player is a monotone submodu ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
We consider the following allocation problem arising in the setting of combinatorial auctions: a set of goods is to be allocated to a set of players so as to maximize the sum of the utilities of the players (i.e., the social welfare). In the case when the utility of each player is a monotone submodular function, we prove that there is no polynomial time approximation algorithm which approximates the maximum social welfare by a factor better than 1 − 1/e � 0.632, unless P = NP. Our result is based on a reduction from a multiprover proof system for MAX3COLORING. 1
Auctions with budget constraints
 In 9th Scandinavian Workshop on Algorithm Theory (SWAT
, 2004
"... Abstract. In a combinatorial auction k different items are sold to n bidders, where the objective of the seller is to maximize the revenue. The main difficulty to find an optimal allocation is due to the fact that the valuation function of each bidder for bundles of items is not necessarily an addit ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
Abstract. In a combinatorial auction k different items are sold to n bidders, where the objective of the seller is to maximize the revenue. The main difficulty to find an optimal allocation is due to the fact that the valuation function of each bidder for bundles of items is not necessarily an additive function over the items. An auction with budget constraints is a common special case where bidders generally have additive valuations, yet they have a limit on their maximal valuation. Auctions with budget constraints were analyzed by Lehmann, Lehmann and Nisan [11], as part of a wider class of auctions, where they have shown that maximizing the revenue is NPhard, and presented a greedy 2approximation algorithm. In this paper we present exact and approximate algorithms for auctions with budget constraints. We present a randomized algorithm with an e approximation ratio of ≈ 1.582, which can be derandomized. We e−1 analyze the special case where all bidders have the same budget constraint, and show an algorithm whose approximation ratio is between 1.3837 and 1.3951. We also present an FPTAS for the case of a constant number of bidders. 1