Results 1  10
of
10
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 45 (19 self)
 Add to MetaCart
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
Algebraic Topology And Concurrency
 Theoretical Computer Science
, 1998
"... This article is intended to provide some new insights about concurrency theory using ideas from geometry, and more specifically from algebraic topology. The aim of the paper is twofold: we justify applications of geometrical methods in concurrency through some chosen examples and we give the mathem ..."
Abstract

Cited by 40 (8 self)
 Add to MetaCart
This article is intended to provide some new insights about concurrency theory using ideas from geometry, and more specifically from algebraic topology. The aim of the paper is twofold: we justify applications of geometrical methods in concurrency through some chosen examples and we give the mathematical foundations needed to understand the geometric phenomenon that we identify. In particular we show that the usual notion of homotopy has to be refined to take into account some partial ordering describing the way time goes. This gives rise to some new interesting mathematical problems as well as give some common grounds to computerscientific problems that have not been precisely related otherwise in the past. The organization of the paper is as follows. In Section 2 we explain to which extent we can use some geometrical ideas in computer science: we list a few of the potential or well known areas of application and try to exemplify some of the properties of concurrent (and distributed) systems we are interested in. We first explain the interest of using some geometric ideas for semantical reasons. Then we take the example of concurrent databases with the problem of finding deadlocks and with some aspects of serializability theory. More general questions about schedules can be asked as well and related to some geometric considerations, even for scheduling microinstructions (and not only coarsegrained transactions as for databases). The final example is the one of faulttolerant protocols for distributed systems, where subtle scheduling properties go into play. In Section 3 we give the first few definitions needed for modeling the topological spaces arising from Section 2. Basically, we need to define a topological space containing all traces of executions of the concu...
Geometry and Concurrency: A User's Guide
, 2000
"... Introduction "Geometry and Concurrency" is not yet a wellestablished domain of research, but is rather made of a collection of seemingly related techniques, algorithms and formalizations, coming from different application areas, accumulated over a long period of time. There is currently a certain ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
Introduction "Geometry and Concurrency" is not yet a wellestablished domain of research, but is rather made of a collection of seemingly related techniques, algorithms and formalizations, coming from different application areas, accumulated over a long period of time. There is currently a certain amount of effort made for unifying these (in particular see the article (Gunawardena, 1994)), following the workshop "New Connections between Computer Science and Mathematics" held at the Newton Institute in Cambridge, England in November 1995 (and sponsored by HP/BRIMS). More recently, the first workshop on the very same subject has been held in Aalborg, Denmark (see http://www.math.auc.dk/~raussen/admin/workshop/workshop.html where the articles of this issue, among others, have been first sketched. But what is "Geometry and Concurrency" composed of then? It is an area of research made of techniques which use geometrical reasoning for describing and solving problems
Complete Axioms for Categorical Fixedpoint Operators
 In Proceedings of 15th Annual Symposium on Logic in Computer Science
, 2000
"... We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the fre ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result derives them from the existence of sufficiently many bifree algebras (exploiting the universal property Freyd introduced in his notion of algebraic compactness) . Another result shows that, in the presence of a parameterized natural numbers object and an equational lifting monad, any uniform fixedpoint operator is necessarily an iteration operator. 1. Introduction Fixed points play a central role in domain theory. Traditionally, one works with a category such as Cppo, the category of !continuous functions between !complete pointed partial orders. This possesses a leastfixedpoint oper...
A Theory of Recursive Domains with Applications to Concurrency
 In Proc. of LICS ’98
, 1997
"... Marcelo Fiore , Glynn Winskel (1) BRICS , University of Aarhus, Denmark (2) LFCS, University of Edinburgh, Scotland December 1997 Abstract We develop a 2categorical theory for recursively defined domains. ..."
Abstract

Cited by 23 (14 self)
 Add to MetaCart
Marcelo Fiore , Glynn Winskel (1) BRICS , University of Aarhus, Denmark (2) LFCS, University of Edinburgh, Scotland December 1997 Abstract We develop a 2categorical theory for recursively defined domains.
Computational Adequacy for Recursive Types in Models of Intuitionistic Set Theory
 In Proc. 17th IEEE Symposium on Logic in Computer Science
, 2003
"... This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown that the existence of solutions to recursive domain equations depends upon the strength of the set theory. We observe that the internal set theory of an elementary topos is not strong enough to guarantee their existence. In contrast, as our first main result, we establish that solutions to recursive domain equations do exist when the category of sets is a model of full intuitionistic ZermeloFraenkel set theory. We then apply this result to obtain a denotational interpretation of FPC, a recursively typed lambdacalculus with callbyvalue operational semantics. By exploiting the intuitionistic logic of the ambient model of intuitionistic set theory, we analyse the relationship between operational and denotational semantics. We first prove an “internal ” computational adequacy theorem: the model always believes that the operational and denotational notions of termination agree. This allows us to identify, as our second main result, a necessary and sufficient condition for genuine “external ” computational adequacy to hold, i.e. for the operational and denotational notions of termination to coincide in the real world. The condition is formulated as a simple property of the internal logic, related to the logical notion of 1consistency. We provide useful sufficient conditions for establishing that the logical property holds in practice. Finally, we outline how the methods of the paper may be applied to concrete models of FPC. In doing so, we obtain computational adequacy results for an extensive range of realizability and domaintheoretic models.
Presheaf Models for CCSlike Languages
 THEORETICAL COMPUTER SCIENCE
, 1999
"... The aim of this paper is to harness the mathematical machinery around presheaves for the purposes of process calculi. Joyal, Nielsen and Winskel proposed a general definition of bisimulation from open maps. Here we show that openmap bisimulations within a range of presheaf models are congruences ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
The aim of this paper is to harness the mathematical machinery around presheaves for the purposes of process calculi. Joyal, Nielsen and Winskel proposed a general definition of bisimulation from open maps. Here we show that openmap bisimulations within a range of presheaf models are congruences for a general process language, in which CCS and related languages are easily encoded. The results are then transferred to traditional models for processes. By first establishing the congruence results for presheaf models, abstract, general proofs of congruence properties can be provided and the awkwardness caused through traditional models not always possessing the cartesian liftings, used in the breakdown of process operations, are sidestepped. The abstract results are applied to show that hereditary historypreserving bisimulation is a congruence for CCSlike languages to which is added a refinement operator on event structures as proposed by van Glabbeek and Goltz.
An Equational Notion of Lifting Monad
 TITLE WILL BE SET BY THE PUBLISHER
, 2003
"... We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of the former fully embeds in the partial category of the latter. Thus equational lifting monads precisely capture the equational properties of partial maps as induced by partial map classifiers. The representation theorem also provides a tool for transferring nonequational properties of partial map classifiers to equational lifting monads. It is proved using a direct axiomatization of Kleisli categories of equational lifting monads. This axiomatization is of interest in its own right. 1
Equational lifting monads
 Proceedings CTCS '99, Electronic Notes in Computer Science
, 1999
"... We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of the former fully embeds in the partial category of the latter. Thus equational lifting monads precisely capture the (partial) equational properties of partial map classifiers. The representation theorem also provides a tool for transferring nonequational properties of partial map classifiers to equational lifting monads. It is proved using a direct axiomatization of the Kleisli categories of equational lifting monads as abstract Kleisli categories with extra structure. This axiomatization is of interest in its own right. 1
Developing Theories of Types and Computability
, 1999
"... Introduction Domain Theory, type theory (both in the style of MartinLof [40, 41] and in the polymorphic style of Girard/Reynolds [23, 56]), and topos theory (both in the topological/sheaftheoretic treatments and in the realizability approach going back to the early work of Kleene) have attempted ..."
Abstract
 Add to MetaCart
Introduction Domain Theory, type theory (both in the style of MartinLof [40, 41] and in the polymorphic style of Girard/Reynolds [23, 56]), and topos theory (both in the topological/sheaftheoretic treatments and in the realizability approach going back to the early work of Kleene) have attempted to improve on set theory by providing a large suite of closure conditions on domains/types/objects as well as a farreaching logic of properties emphasizing the computable/constructive aspects of the definitions and qualities of functions. Scott's domain theory, (and the many variations proposed and studied; see [2] and [75] for recent introductions with references) has been especially successful in allowing for recursive definitions of types (i.e., solutions to domain equations) but at the expense of introducing a complex structure of "partial elements" in order to have solutions to fixedpoint equations in the domains. Moreover, the topological and e