Results 1 
3 of
3
Complete Axioms for Categorical Fixedpoint Operators
 In Proceedings of 15th Annual Symposium on Logic in Computer Science
, 2000
"... We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the fre ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result derives them from the existence of sufficiently many bifree algebras (exploiting the universal property Freyd introduced in his notion of algebraic compactness) . Another result shows that, in the presence of a parameterized natural numbers object and an equational lifting monad, any uniform fixedpoint operator is necessarily an iteration operator. 1. Introduction Fixed points play a central role in domain theory. Traditionally, one works with a category such as Cppo, the category of !continuous functions between !complete pointed partial orders. This possesses a leastfixedpoint oper...
The Structure of CallbyValue
, 2000
"... To my parents Understanding procedure calls is crucial in computer science and everyday programming. Among the most common strategies for passing procedure arguments (‘evaluation strategies’) are ‘callbyname’, ‘callbyneed’, and ‘callbyvalue’, where the latter is the most commonly used. While ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
To my parents Understanding procedure calls is crucial in computer science and everyday programming. Among the most common strategies for passing procedure arguments (‘evaluation strategies’) are ‘callbyname’, ‘callbyneed’, and ‘callbyvalue’, where the latter is the most commonly used. While reasoning about procedure calls is simple for callbyname, problems arise for callbyneed and callbyvalue, because it matters how often and in which order the arguments of a procedure are evaluated. We shall classify these problems and see that all of them occur for callbyvalue, some occur for callbyneed, and none occur for callbyname. In that sense, callbyvalue is the ‘greatest common denominator ’ of the three evaluation strategies. Reasoning about callbyvalue programs has been tackled by Eugenio Moggi’s ‘computational lambdacalculus’, which is based on a distinction between ‘values’
Restriction categories III: colimits, partial limits, and extensivity
 Mathematical Structures in Computer Science
, 2007
"... ..."